-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_form.rs
1084 lines (903 loc) · 31 KB
/
eval_form.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use crate::{
multilinear_polynomial::traits::MultilinearPolynomialTrait,
univariate_polynomial::UnivariatePolynomial, utils::get_sib,
};
use ark_ff::{BigInteger, PrimeField};
use ark_serialize::*;
use std::ops::{Add, Mul, Sub};
#[derive(Debug, Clone, CanonicalSerialize, CanonicalDeserialize)]
pub struct MLE<F: PrimeField> {
// Variables are not zero indexed
pub num_of_vars: usize,
// The val vector contains the evaluation of the mle over the boolean hypercube
pub val: Vec<F>,
}
impl<F: PrimeField> MLE<F> {
pub fn new(val: &Vec<F>) -> Self {
assert!(
val.len().is_power_of_two(),
"Number of evaluations should be a power of two"
);
let num_of_vars = (val.len() as f64).log2().ceil() as usize;
Self {
num_of_vars,
val: val.to_vec(),
}
}
// Indexes are not zero indexed
pub fn add_variable_at_index(&self, indexes: &mut Vec<usize>) -> MLE<F> {
if indexes.is_empty() {
return self.clone();
}
indexes.sort();
let mut new_self = self.val.clone();
for i in 0..indexes.len() {
let mut res = vec![F::zero(); new_self.len() * 2];
let mut shift = 2_usize.pow(((self.num_of_vars + i + 1) - indexes[i]) as u32);
let mut index = 0;
for j in 0..new_self.len() {
if shift == 0 {
shift = 2_usize.pow(((self.num_of_vars + i + 1) - indexes[i]) as u32);
index += shift;
}
res[index] = new_self[j];
res[get_sib(index, self.num_of_vars + i + 1, indexes[i])] = new_self[j];
shift -= 1;
index += 1;
}
new_self = res.clone();
}
MLE::new(&new_self)
}
pub fn skip_one_and_sum_over_the_boolean_hypercube(
&self,
degree: usize,
) -> UnivariatePolynomial<F> {
let x_values = (0..degree)
.map(|val| match F::from_str(&val.to_string()) {
Ok(val) => val,
Err(_) => panic!("Error converting value to string"),
})
.collect();
let y_values = (0..degree)
.map(|val| {
let ind = match F::from_str(&val.to_string()) {
Ok(val) => val,
Err(_) => panic!("Error converting value to string"),
};
self.partial_eval(&vec![(1, ind)]).val.iter().sum()
})
.collect();
UnivariatePolynomial::interpolate(&x_values, &y_values)
}
// This function generates the evaluation form of a polynomial
// that checks if the values passed in is equal to the value the polynomial was generated with
// ie, the MLE evaluates to 1 at g and 0 at other places over the boolean hypercube.
pub fn eq(g: &[F]) -> MLE<F> {
let num_of_vars = g.len();
let mut res = vec![F::zero(); 1 << num_of_vars];
for i in 0..res.len() {
let binary_string: Vec<F> = format!("{:0width$b}", i, width = num_of_vars)
.chars()
.enumerate()
.map(|(index, bit)| {
if bit == '0' {
return F::one() - g[index];
} else {
return g[index];
}
})
.collect();
res[i] = binary_string
.iter()
.skip(1)
.fold(binary_string[0], |init, check| init * check);
}
MLE::new(&res)
}
pub fn skip_one_and_sum_product_over_the_boolean_hypercube(
&self,
rhs: &Vec<Self>,
) -> UnivariatePolynomial<F> {
let x_values = (0..(rhs.len() + 2))
.map(|val| match F::from_str(&val.to_string()) {
Ok(val) => val,
Err(_) => panic!("Failed to convert val to string"),
})
.collect();
let y_values = (0..rhs.len() + 2)
.map(|val| match F::from_str(&val.to_string()) {
Ok(ind) => {
let rhs = rhs
.iter()
.map(|val| val.partial_eval(&vec![(1, ind)]))
.collect();
self.partial_eval(&vec![(1, ind)])
.element_wise_mul(&rhs)
.val
.iter()
.sum()
}
Err(_) => panic!("Failed to convert value to string"),
})
.collect();
UnivariatePolynomial::interpolate(&x_values, &y_values)
}
pub fn sum_product_over_the_boolean_hypercube(&self, rhs: &Vec<MLE<F>>) -> F {
self.element_wise_mul(rhs).val.iter().sum()
}
pub fn element_wise_mul(&self, rhs: &Vec<Self>) -> Self {
let len = self.val.len();
let _: Vec<_> = rhs
.iter()
.map(|val| {
assert_eq!(
len,
val.val.len(),
"LHS and RHS should have same number of evaluations"
);
})
.collect();
let res_arr: Vec<F> = rhs.iter().fold(self.val.clone(), |mut init, val| {
init = init
.iter()
.zip(&val.val)
.map(|(lhs, rhs)| *lhs * rhs)
.collect();
init
});
MLE::new(&res_arr)
}
// composes an MLE with a line
// The line vector contains a vector for r0 and r1
pub fn compose_with_line(&self, line: Vec<Vec<F>>) -> UnivariatePolynomial<F> {
assert!(line.len() == 2, "Line MLE should be evaluation at 0 and 1");
let mut poly = self
.val
.iter()
.map(|val| UnivariatePolynomial::new(vec![*val]))
.collect::<Vec<UnivariatePolynomial<F>>>();
for i in 1..=self.num_of_vars {
let l_i =
UnivariatePolynomial::new(vec![line[0][i - 1], (line[1][i - 1] - line[0][i - 1])]);
for b in 0..=(2_usize.pow((self.num_of_vars - i) as u32) - 1) {
let left = poly[b].clone();
let right = poly[get_sib(b, self.num_of_vars, i)].clone();
poly[b] = left.clone() + (l_i.clone() * (right - left));
}
}
poly[0].clone()
}
}
impl<F: PrimeField> MultilinearPolynomialTrait<F> for MLE<F> {
fn partial_eval(&self, points: &Vec<(usize, F)>) -> Self {
let mut new_poly = self.clone();
let mut res = vec![];
let mut points = points.clone();
points.sort();
let mut num_of_vars = new_poly.num_of_vars;
let mut previously_evaluated = 0;
for i in 0..points.len() {
let (var, val) = if previously_evaluated == 0 {
previously_evaluated = points[i].0;
points[i]
} else if previously_evaluated < points[i].0 {
previously_evaluated = points[i].0;
(points[i].0 - i, points[i].1)
} else {
previously_evaluated = points[i].0;
points[i]
};
assert!(var <= num_of_vars, "Variable not found");
let mut index = 0;
let mut shift = 2_usize.pow((num_of_vars - var) as u32);
for _ in 0..(new_poly.val.len() / 2) {
if shift == 0 {
shift = 2_usize.pow((num_of_vars - var) as u32);
index += shift;
}
let left = new_poly.val[index];
let right = new_poly.val[get_sib(index, num_of_vars, var)];
// let new = (right * val) + ((F::ONE - val) * left);
let new = left + val * (right - left);
res.push(new);
shift -= 1;
index += 1;
}
new_poly = Self::new(&res);
res = vec![];
num_of_vars = new_poly.num_of_vars;
}
new_poly
}
fn evaluate(&self, points: &Vec<(usize, F)>) -> F {
assert!(
points.len() == self.num_of_vars,
"Provide evaluation point for all variables"
);
let res = self.partial_eval(&points);
res.val[0]
}
fn sum_over_the_boolean_hypercube(&self) -> F {
self.val.iter().fold(F::zero(), |acc, val| acc + val)
}
fn number_of_vars(&self) -> usize {
self.num_of_vars
}
fn to_bytes(&self) -> Vec<u8> {
self.val.iter().fold(
self.num_of_vars.to_be_bytes().to_vec(),
|mut init, value| {
init.extend(value.into_bigint().to_bytes_be());
init
},
)
}
fn relabel(&self) -> Self {
self.clone()
}
fn additive_identity() -> Self {
Self {
val: vec![],
num_of_vars: 0,
}
}
fn to_univariate(&self) -> Result<UnivariatePolynomial<F>, String> {
let mut x_values = vec![];
for i in 0..self.val.len() {
x_values.push(F::from(i as u64));
}
Ok(UnivariatePolynomial::interpolate(&x_values, &self.val))
}
}
impl<F: PrimeField> Add for MLE<F> {
type Output = MLE<F>;
fn add(self, rhs: Self) -> Self::Output {
assert!(
self.val.len() == rhs.val.len(),
"lhs and rhs must have the same number of evaluations"
);
assert!(
self.val.len().is_power_of_two(),
"Number of evaluations must be a power of two"
);
let mut res = vec![];
for i in 0..self.val.len() {
res.push(self.val[i] + rhs.val[i]);
}
Self::new(&res)
}
}
impl<F: PrimeField> Sub for MLE<F> {
type Output = MLE<F>;
fn sub(self, rhs: Self) -> Self::Output {
assert!(
self.val.len() == rhs.val.len(),
"lhs and rhs must have the same number of evaluations"
);
assert!(
self.val.len().is_power_of_two(),
"Number of evaluations must be a power of two"
);
let mut res = vec![];
for i in 0..self.val.len() {
res.push(self.val[i] - rhs.val[i]);
}
Self::new(&res)
}
}
// Multiplication takes variabes as different variables
// Eg: ab * ab = abcd
impl<F: PrimeField> Mul for MLE<F> {
type Output = MLE<F>;
fn mul(self, rhs: Self) -> Self::Output {
assert!(
self.val.len().is_power_of_two() && rhs.val.len().is_power_of_two(),
"Length of evaluations should be a power of two"
);
let res_num_of_vars = self.number_of_vars() + rhs.number_of_vars();
let mut ind_self = (1..=(res_num_of_vars - self.number_of_vars())).collect::<Vec<_>>();
let mut ind_rhs = (rhs.number_of_vars() + 1..=res_num_of_vars).collect::<Vec<_>>();
let new_self = self.add_variable_at_index(&mut ind_self);
let new_rhs = rhs.add_variable_at_index(&mut ind_rhs);
let mut res = vec![F::zero(); new_self.val.len()];
for i in 0..new_self.val.len() {
res[i] = new_self.val[i] * new_rhs.val[i];
}
Self::new(&res)
}
}
//////////////////////////////////
/// EVAL FORM SPARSE POLY
/// //////////////////////////////
pub mod sparse_mle {
use ark_ff::{BigInteger, PrimeField};
use crate::{
multilinear_polynomial::traits::MultilinearPolynomialTrait,
univariate_polynomial::UnivariatePolynomial,
};
#[derive(Debug)]
pub struct SparseMle<F> {
pub num_of_variables: usize,
pub values: Vec<(usize, F)>,
}
impl<F: PrimeField> SparseMle<F> {
pub fn new(num_of_variables: usize, values: Vec<(usize, F)>) -> Self {
Self {
num_of_variables,
values,
}
}
}
impl<F: PrimeField> MultilinearPolynomialTrait<F> for SparseMle<F> {
fn partial_eval(&self, x: &Vec<(usize, F)>) -> Self {
todo!()
}
fn evaluate(&self, x: &Vec<(usize, F)>) -> F {
todo!()
}
fn number_of_vars(&self) -> usize {
self.num_of_variables
}
fn to_bytes(&self) -> Vec<u8> {
self.values.iter().fold(
self.num_of_variables.to_be_bytes().to_vec(),
|mut init, (index, val)| {
init.append(&mut index.to_be_bytes().to_vec());
init.append(&mut val.into_bigint().to_bytes_be());
init
},
)
}
fn relabel(&self) -> Self {
todo!()
}
fn additive_identity() -> Self {
Self {
num_of_variables: 0,
values: vec![],
}
}
fn sum_over_the_boolean_hypercube(&self) -> F {
self.values
.iter()
.fold(F::zero(), |init, (_, eval)| init + eval)
}
fn to_univariate(&self) -> Result<UnivariatePolynomial<F>, String> {
todo!()
}
}
#[cfg(test)]
pub mod tests {
use ark_bn254::Fq;
use super::{MultilinearPolynomialTrait, SparseMle};
#[test]
pub fn test_sparse_poly_sum_over_the_boolean_hypercube() {
let values = vec![(3, Fq::from(1)), (7, Fq::from(1))];
let sparse_poly = SparseMle::new(3, values);
assert_eq!(
sparse_poly.sum_over_the_boolean_hypercube(),
Fq::from(2),
"Incorrect sum over the boolean hypercube"
);
}
}
}
#[cfg(test)]
mod tests {
use ark_bn254::Fr;
use crate::{
multilinear_polynomial::{
coef_form::MultilinearPolynomial, eval_form::MLE, traits::MultilinearPolynomialTrait,
},
univariate_polynomial::UnivariatePolynomial,
};
pub type Fq = Fr;
#[test]
pub fn test_partial_eval_eval_form() {
let val = vec![
Fq::from(1),
Fq::from(2),
Fq::from(3),
Fq::from(4),
Fq::from(5),
Fq::from(6),
Fq::from(7),
Fq::from(8),
];
let poly = MLE::new(&val);
// number of variables for poly should be 3
assert!(poly.num_of_vars == 3, "Number of vars for poly should be 3");
// partially evaluate poly at b = 2
let reduced_poly = poly.partial_eval(&vec![(2, Fq::from(2))]);
assert!(reduced_poly.num_of_vars == 2, "Number of vars should be 2");
assert!(
reduced_poly.val == vec![Fq::from(5), Fq::from(6), Fq::from(9), Fq::from(10),],
"Incorrect evaluation"
);
}
#[test]
fn test_sum_over_boolean_hypercube() {
let val = vec![
Fq::from(1),
Fq::from(2),
Fq::from(3),
Fq::from(4),
Fq::from(5),
Fq::from(6),
Fq::from(7),
Fq::from(8),
];
let poly = MLE::new(&val);
let res = poly.sum_over_the_boolean_hypercube();
assert!(
res == Fq::from(36),
"Incorrect sum over the boolean hypercube"
);
}
#[test]
fn test_eval_form_addition() {
let val1 = vec![
Fq::from(9),
Fq::from(12),
Fq::from(3),
Fq::from(15),
Fq::from(24),
Fq::from(1),
Fq::from(7),
Fq::from(9),
];
let val2 = vec![
Fq::from(1),
Fq::from(2),
Fq::from(3),
Fq::from(4),
Fq::from(5),
Fq::from(6),
Fq::from(7),
Fq::from(8),
];
let poly1: MLE<Fq> = MLE::new(&val1);
let poly2 = MLE::new(&val2);
let res_poly = poly1.clone() + poly2.clone();
let coeff_form = MultilinearPolynomial::interpolate(&res_poly.val);
assert!(
poly1.val[3] + poly2.val[3]
== coeff_form.evaluate(&vec![(0, Fq::from(0)), (1, Fq::from(1)), (2, Fq::from(1))]),
"Evaluations do not match"
);
}
#[test]
pub fn test_evaluate_eval_form() {
// Polynomial in consideration = 2ab + 3bc
let val = vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(3),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(5),
];
let poly = MLE::new(&val);
// number of variables for poly should be 3
assert!(poly.num_of_vars == 3, "Number of vars for poly should be 3");
// evaluate poly at a = 3, b = 2 and c = 5
let res = poly.evaluate(&vec![(1, Fq::from(3)), (3, Fq::from(5)), (2, Fq::from(2))]);
assert!(res == Fq::from(42), "Incorrect evaluation");
}
#[test]
fn test_eval_form_to_univariate() {
let evaluations = vec![Fq::from(2), Fq::from(3), Fq::from(8), Fq::from(12)];
let eval_poly = MLE::new(&evaluations);
let eval_poly_univariate = eval_poly.to_univariate().unwrap();
assert!(
eval_poly_univariate.evaluate(Fq::from(0)) == Fq::from(2),
"Incorrect evaluation: Conversion failed"
);
assert!(
eval_poly_univariate.evaluate(Fq::from(1)) == Fq::from(3),
"Incorrect evaluation: Conversion failed"
);
assert!(
eval_poly_univariate.evaluate(Fq::from(2)) == Fq::from(8),
"Incorrect evaluation: Conversion failed"
);
assert!(
eval_poly_univariate.evaluate(Fq::from(3)) == Fq::from(12),
"Incorrect evaluation: Conversion failed"
);
}
#[test]
fn test_eval_form_multiplication() {
// let poly1 = 2ab
let val1 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
// let poly2 = 3cd
let val2 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(3)];
let poly1: MLE<Fq> = MLE::new(&val1);
let poly2: MLE<Fq> = MLE::new(&val2);
// the resulting poly should be 6abcd
let res_poly = poly1.clone() * poly2.clone();
assert!(
poly1.evaluate(&vec![
(1, Fq::from(38)),
(2, Fq::from(64)),
// (3, Fq::from(90)),
// (4, Fq::from(30))
]) * poly2.evaluate(&vec![
// (1, Fq::from(38)),
// (2, Fq::from(64)),
(1, Fq::from(90)),
(2, Fq::from(30))
]) == res_poly.evaluate(&vec![
(1, Fq::from(38)),
(2, Fq::from(64)),
(3, Fq::from(90)),
(4, Fq::from(30))
]),
"Evaluations do not match"
);
}
#[test]
pub fn test_add_variable_at_index_1() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable to the front to get 2abc where a is the new variable
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![1]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_2() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at the middle to get 2abc where b is the new variable
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![2]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_3() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at the end to get 2abc where c is the new variable
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![3]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_1_and_2() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at index 1 and 2 to get 2abcd where a and b are the new variable
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![2, 1]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_2_and_3() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at index 2 and 3 to get 2abcd where b and c are the new variables
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![3, 2]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(2),
Fq::from(0),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_3_and_4() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at index 3 and 4 to get 2abcd where c and d are the new variables
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![4, 3]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
Fq::from(2),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_add_variable_at_index_1_and_4() {
// Polynomial in consideration: 2ab
let val = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let poly = MLE::new(&val);
// add a new variable at index 1 and 4 to get 2abcd where a and d are the new variables
// Note that indexes are not zero indexed
let new_poly = poly.add_variable_at_index(&mut vec![4, 1]);
assert!(
new_poly.val
== vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
],
"Failed to add variable"
);
}
#[test]
pub fn test_skip_one_and_sum_over_the_boolean_hypercube() {
let val = vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(2),
Fq::from(2),
];
let poly = MLE::new(&val);
let claimed_sum = poly.sum_over_the_boolean_hypercube();
let univariate_poly = poly.skip_one_and_sum_over_the_boolean_hypercube(2);
assert!(
univariate_poly == UnivariatePolynomial::new(vec![Fq::from(4)]),
"Wrong univariate polynomial"
);
assert!(
claimed_sum
== univariate_poly.evaluate(Fq::from(0)) + univariate_poly.evaluate(Fq::from(1)),
"Invalid univariate poly"
);
}
#[test]
pub fn test_element_wise_mul() {
let vec_1 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let vec_2 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(3)];
let poly_1 = MLE::new(&vec_1);
let poly_2 = MLE::new(&vec_2);
let res_poly = poly_1.element_wise_mul(&vec![poly_2]);
assert_eq!(
res_poly.val,
vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(6),],
"Wrong elementwise mul result"
);
}
#[test]
pub fn test_skip_one_and_sum_product_over_the_boolean_hypercube() {
let val_1 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(2)];
let val_2 = vec![Fq::from(0), Fq::from(0), Fq::from(0), Fq::from(3)];
let poly_1 = MLE::new(&val_1);
let poly_2 = MLE::new(&val_2);
let res_poly = poly_1.skip_one_and_sum_product_over_the_boolean_hypercube(&vec![poly_2]);
assert_eq!(
res_poly.evaluate(Fq::from(0)),
Fq::from(0),
"Invalid evaluation at 0 of sum of product over the boolean hypercube"
);
assert_eq!(
res_poly.evaluate(Fq::from(1)),
Fq::from(6),
"Invalid evaluation at 1 of sum of product over the boolean hypercube"
);
assert_eq!(
res_poly.evaluate(Fq::from(2)),
Fq::from(24),
"Invalid evaluation at 2 sum of product over the boolean hypercube"
);
}
#[test]
pub fn test_eq_function() {
let g = [Fq::from(1), Fq::from(0), Fq::from(1)];
let eq_poly = MLE::eq(&g);
dbg!(&eq_poly.num_of_vars);
let sum = eq_poly.sum_over_the_boolean_hypercube();
assert_eq!(sum, Fq::from(1), "Incorrect sum over the boolean hypercube");
assert_eq!(
Fq::from(1),
eq_poly.evaluate(
&g.into_iter()
.enumerate()
.map(|(var, val)| (var + 1, val))
.collect::<Vec<(usize, Fq)>>()
),
"Eq poly evaluated at g shoild give 1"
);
}
#[test]
pub fn test_skip_one_and_sum_over_the_boolean_hypercube_for_degree_3() {
let val = vec![
Fq::from(0),
Fq::from(0),
Fq::from(0),
Fq::from(0),