-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathsegmenter.go
executable file
·286 lines (245 loc) · 7.25 KB
/
segmenter.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2013 Hui Chen
// Copyright 2016 ego authors
//
// Licensed under the Apache License, Version 2.0 (the "License"): you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
package gse
import (
"unicode"
"unicode/utf8"
)
// Segmenter define the segmenter structure
type Segmenter struct {
Dict *Dictionary
Load bool
DictSep string
DictPath string
// NotLoadHMM option load the default hmm model config (Chinese char)
NotLoadHMM bool
// AlphaNum set splitTextToWords can add token
// when words in alphanum
// set up alphanum dictionary word segmentation
AlphaNum bool
Alpha bool
Num bool
// ToLower set alpha tolower
// ToLower bool
// LoadNoFreq load not have freq dict word
LoadNoFreq bool
// MinTokenFreq load min freq token
MinTokenFreq float64
// TextFreq add token frequency when not specified freq
TextFreq string
// SkipLog set skip log print
SkipLog bool
MoreLog bool
// SkipPos skip PosStr pos
SkipPos bool
NotStop bool
// StopWordMap the stop word map
StopWordMap map[string]bool
}
// jumper this structure is used to record information
// about the forward leap at a word in the Viterbi algorithm
type jumper struct {
minDistance float32
token *Token
}
// Segment use the shortest path to segment the text
//
// input parameter:
//
// bytes UTF8 text []byte
//
// output:
//
// []Segment return segments result
func (seg *Segmenter) Segment(bytes []byte) []Segment {
return seg.internalSegment(bytes, false)
}
// ModeSegment segment using search mode if searchMode is true
func (seg *Segmenter) ModeSegment(bytes []byte, searchMode ...bool) []Segment {
var mode bool
if len(searchMode) > 0 {
mode = searchMode[0]
}
return seg.internalSegment(bytes, mode)
}
func (seg *Segmenter) internalSegment(bytes []byte, searchMode bool) []Segment {
// special cases
if len(bytes) == 0 {
// return []Segment{}
return nil
}
// split text to words
text := seg.SplitTextToWords(bytes)
return seg.segmentWords(text, searchMode)
}
func (seg *Segmenter) segmentWords(text []Text, searchMode bool) []Segment {
// The case where the division is no longer possible in the search mode
if searchMode && len(text) == 1 {
return nil
}
// jumpers defines the forward jump information at each literal,
// including the subword corresponding to this jump,
// the and the value of the shortest path from the start
// of the text segment to that literal
//
jumpers := make([]jumper, len(text))
if seg.Dict == nil {
return nil
}
tokens := make([]*Token, seg.Dict.maxTokenLen)
for current := 0; current < len(text); current++ {
// find the shortest path of the previous token,
// to calculate the subsequent path values
var baseDistance float32
if current == 0 {
// When this character is at the beginning of the text,
// the base distance should be zero
baseDistance = 0
} else {
baseDistance = jumpers[current-1].minDistance
}
// find all the segments starting with this token
tx := text[current:minInt(current+seg.Dict.maxTokenLen, len(text))]
numTokens := seg.Dict.LookupTokens(tx, tokens)
// Update the jump information at the end of the split word
// for all possible splits
for iToken := 0; iToken < numTokens; iToken++ {
location := current + len(tokens[iToken].text) - 1
if !searchMode || current != 0 || location != len(text)-1 {
updateJumper(&jumpers[location], baseDistance, tokens[iToken])
}
}
// Add a pseudo-syllable if there is no corresponding syllable
// for the current character
if numTokens == 0 || len(tokens[0].text) > 1 {
updateJumper(&jumpers[current], baseDistance,
&Token{text: []Text{text[current]}, freq: 1, distance: 32, pos: "x"})
}
}
// Scan the first pass from back to front
// to get the number of subwords to be added
numSeg := 0
for index := len(text) - 1; index >= 0; {
location := index - len(jumpers[index].token.text) + 1
numSeg++
index = location - 1
}
// Scan from back to front for a second time
// to add the split to the final result
outputSegments := make([]Segment, numSeg)
for index := len(text) - 1; index >= 0; {
location := index - len(jumpers[index].token.text) + 1
numSeg--
outputSegments[numSeg].token = jumpers[index].token
index = location - 1
}
// Calculate the byte position of each participle
bytePosition := 0
for iSeg := 0; iSeg < len(outputSegments); iSeg++ {
outputSegments[iSeg].start = bytePosition
bytePosition += textSliceByteLen(outputSegments[iSeg].token.text)
outputSegments[iSeg].end = bytePosition
}
return outputSegments
}
// updateJumper Update the jump information:
// 1. When the location has never been visited
// (the case where jumper.minDistance is zero), or
// 2. When the current shortest path at the location
// is greater than the new shortest path
//
// Update the shortest path value of the current location to baseDistance
// add the probability of the new split
func updateJumper(jumper *jumper, baseDistance float32, token *Token) {
newDistance := baseDistance + token.distance
if jumper.minDistance == 0 || jumper.minDistance > newDistance {
jumper.minDistance = newDistance
jumper.token = token
}
}
// SplitWords splits a string to token words
func SplitWords(text Text) []Text {
var seg Segmenter
return seg.SplitTextToWords(text)
}
// SplitTextToWords splits a string to token words
func (seg *Segmenter) SplitTextToWords(text Text) []Text {
output := make([]Text, 0, len(text)/3)
current, alphanumericStart := 0, 0
inAlphanumeric := true
for current < len(text) {
r, size := utf8.DecodeRune(text[current:])
isNum := unicode.IsNumber(r) && !seg.Num
isAlpha := unicode.IsLetter(r) && !seg.Alpha
if size <= 2 && (isAlpha || isNum) {
// Currently is Latin alphabet or numbers (not in CJK)
if !inAlphanumeric {
alphanumericStart = current
inAlphanumeric = true
}
if seg.AlphaNum {
output = append(output, toLow(text[current:current+size]))
}
} else {
if inAlphanumeric {
inAlphanumeric = false
if current != 0 && !seg.AlphaNum {
output = append(output, toLow(text[alphanumericStart:current]))
}
}
output = append(output, text[current:current+size])
}
current += size
}
// process last byte is alpha and num
if inAlphanumeric && !seg.AlphaNum {
if current != 0 {
output = append(output, toLow(text[alphanumericStart:current]))
}
}
return output
}
func toLow(text []byte) []byte {
if ToLower {
return toLower(text)
}
return text
}
// toLower converts a string to lower
func toLower(text []byte) []byte {
output := make([]byte, len(text))
for i, t := range text {
if t >= 'A' && t <= 'Z' {
output[i] = t - 'A' + 'a'
} else {
output[i] = t
}
}
return output
}
// minInt get min value of int
func minInt(a, b int) int {
if a > b {
return b
}
return a
}
// maxInt get max value of int
func maxInt(a, b int) int {
if a > b {
return a
}
return b
}