YDF (Yggdrasil Decision Forests) is a library to train, evaluate, interpret, and serve Random Forest, Gradient Boosted Decision Trees, CART and Isolation forest models.
See the documentation for more information on YDF.
To install YDF from PyPI, run:
pip install ydf -U
import ydf
import pandas as pd
# Load dataset with Pandas
ds_path = "https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset/"
train_ds = pd.read_csv(ds_path + "adult_train.csv")
test_ds = pd.read_csv(ds_path + "adult_test.csv")
# Train a Gradient Boosted Trees model
model = ydf.GradientBoostedTreesLearner(label="income").train(train_ds)
# Look at a model (input features, training logs, structure, etc.)
model.describe()
# Evaluate a model (e.g. roc, accuracy, confusion matrix, confidence intervals)
model.evaluate(test_ds)
# Generate predictions
model.predict(test_ds)
# Analyse a model (e.g. partial dependence plot, variable importance)
model.analyze(test_ds)
# Benchmark the inference speed of a model
model.benchmark(test_ds)
# Save the model
model.save("/tmp/my_model")
Example with the C++ API.
auto dataset_path = "csv:train.csv";
// List columns in training dataset
DataSpecification spec;
CreateDataSpec(dataset_path, false, {}, &spec);
// Create a training configuration
TrainingConfig train_config;
train_config.set_learner("RANDOM_FOREST");
train_config.set_task(Task::CLASSIFICATION);
train_config.set_label("my_label");
// Train model
std::unique_ptr<AbstractLearner> learner;
GetLearner(train_config, &learner);
auto model = learner->Train(dataset_path, spec);
// Export model
SaveModel("my_model", model.get());
(based on examples/beginner.cc)
Check the Getting Started tutorial ðŸ§.
If you us Yggdrasil Decision Forests in a scientific publication, please cite the following paper: Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library.
Bibtex
@inproceedings{GBBSP23,
author = {Mathieu Guillame{-}Bert and
Sebastian Bruch and
Richard Stotz and
Jan Pfeifer},
title = {Yggdrasil Decision Forests: {A} Fast and Extensible Decision Forests
Library},
booktitle = {Proceedings of the 29th {ACM} {SIGKDD} Conference on Knowledge Discovery
and Data Mining, {KDD} 2023, Long Beach, CA, USA, August 6-10, 2023},
pages = {4068--4077},
year = {2023},
url = {https://doi.org/10.1145/3580305.3599933},
doi = {10.1145/3580305.3599933},
}
Raw
Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library, Guillame-Bert et al., KDD 2023: 4068-4077. doi:10.1145/3580305.3599933
You can contact the core development team at [email protected].
Yggdrasil Decision Forests and TensorFlow Decision Forests are developed by:
- Mathieu Guillame-Bert (gbm AT google DOT com)
- Jan Pfeifer (janpf AT google DOT com)
- Sebastian Bruch (sebastian AT bruch DOT io)
- Richard Stotz (richardstotz AT google DOT com)
- Arvind Srinivasan (arvnd AT google DOT com)
Contributions to TensorFlow Decision Forests and Yggdrasil Decision Forests are welcome. If you want to contribute, check the contribution guidelines.