-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCBOW.py
84 lines (59 loc) · 2.53 KB
/
CBOW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# this a CBOW implementation using Pytorch
# modified from http://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
raw_text = """台北 世大運 19 日 開幕 為期 12 天 有 134 國 近萬
運動員 參賽 在 7 萬名 工作 人員 1 萬 多名 志工 參與 之下 舉辦 271 個
比賽 項目 頒出 1978 面獎 牌 有 超過 72 萬 人次 的 觀眾 進場 觀賞 賽事 台灣
代表 團喊 出 回家 比賽 以 26 金 34 銀 30 銅 排名 第三 創造 史上 最佳 紀錄""".split()
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
torch.manual_seed(1)
CONTEXT_SIZE = 2 # windows size == 2 * CONTEXT_SIZE
EMBEDDING_DIM = 10
# By deriving a set from `raw_text`, we deduplicate the array
vocab = set(raw_text)
vocab_size = len(vocab)
word_to_ix = {word: i for i, word in enumerate(vocab)}
data = []
for i in range(2, len(raw_text) - 2):
context = [raw_text[i - 2], raw_text[i - 1],
raw_text[i + 1], raw_text[i + 2]]
target = raw_text[i]
data.append((context, target))
class CBOW(nn.Module):
def __init__(self, vocab_size, embedding_dim, context_size):
super(CBOW, self).__init__()
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
self.linear1 = nn.Linear(embedding_dim, vocab_size)
def forward(self, inputs):
embeds = self.embeddings(inputs).sum(dim=0).view((1, -1))
out = self.linear1(embeds)
log_probs = F.log_softmax(out)
return log_probs
def make_context_vector(context, word_to_ix):
idxs = [word_to_ix[w] for w in context]
tensor = torch.LongTensor(idxs)
return autograd.Variable(tensor)
context = make_context_vector(data[0][0], word_to_ix) # example
# create your model and train. here are some functions to help you make
# the data ready for use by your module
losses = []
loss_function = nn.NLLLoss()
model = CBOW(vocab_size, EMBEDDING_DIM, CONTEXT_SIZE)
optimizer = optim.SGD(model.parameters(), lr=0.001)
for epoch in range(20000):
total_loss = torch.Tensor([0])
for context, target in data:
context_idxs = [word_to_ix[w] for w in context]
context_var = autograd.Variable(torch.LongTensor(context_idxs))
model.zero_grad()
log_probs = model(context_var)
loss = loss_function(log_probs, autograd.Variable(
torch.LongTensor([word_to_ix[target]])))
loss.backward()
optimizer.step()
total_loss += loss.data
losses.append(total_loss)
print(losses)