-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit_Research_Space.m
109 lines (83 loc) · 4.73 KB
/
init_Research_Space.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function [point,Pg,P_results,Pg_result,Pg_criterias] = init_Research_Space(n_points,preconfig_fis_file_id,folder,simulink_file,simulink_fis,costFunction,markers_colors,criterias,numberOfInputs)
P_results_bis = zeros(length(criterias),n_points);
for k_point = 1:n_points
point(k_point) = initFuzzyStructure(preconfig_fis_file_id);
for i_input = 1:numberOfInputs
numberOfPartition = length(preconfig_fis_file_id.Inputs(i_input).mf);
for i_Partition=1:numberOfPartition
preconfig_fis_Partition = preconfig_fis_file_id.Inputs(i_input).mf(i_Partition);
% coompute of supports
if i_Partition==1
point(k_point).input(i_input).fuzzy_set(i_Partition).support = [preconfig_fis_Partition.params(1) preconfig_fis_Partition.params(4)];
else
point(k_point).input(i_input).fuzzy_set(i_Partition).support(2) = preconfig_fis_Partition.params(4);
end
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
l_support = poInFs.support(2)-poInFs.support(1)-0.1;
offset_support = poInFs.support(1);
% compute of kernels under strong fuzzy partition constraint
if i_Partition==1
% first limit universe case
point(k_point).input(i_input).fuzzy_set(i_Partition).kernel = [poInFs.support(1) rand()*l_support+offset_support];
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
point(k_point).input(i_input).fuzzy_set(i_Partition+1).support(1) = poInFs.kernel(2);
elseif i_Partition==numberOfPartition
% second limit universe case
point(k_point).input(i_input).fuzzy_set(i_Partition).kernel = [rand()*l_support+offset_support poInFs.support(2)];
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
point(k_point).input(i_input).fuzzy_set(i_Partition-1).support(2) = poInFs.kernel(1);
else
% normal case
% create random kernel under the constraint of their support
point(k_point).input(i_input).fuzzy_set(i_Partition).kernel = [rand()*l_support+offset_support 0];
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
offset_kernel = poInFs.kernel(1);
l_max_kernel = poInFs.support(2)-poInFs.kernel(1)-0.1;
point(k_point).input(i_input).fuzzy_set(i_Partition).kernel(2) = rand()*l_max_kernel+offset_kernel;
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
% constraint of strong fuzzy partition
point(k_point).input(i_input).fuzzy_set(i_Partition-1).support(2) = poInFs.kernel(1);
point(k_point).input(i_input).fuzzy_set(i_Partition+1).support(1) = poInFs.kernel(2);
end
end
end
end
P_results = zeros(1,n_points);
currentFis = preconfig_fis_file_id;
for k_point = 1:n_points
for i_input = 1:numberOfInputs
for i_Partition = 1:length(currentFis.Inputs(i_input).mf)
% simulation with the new partitions
poInFs = point(k_point).input(i_input).fuzzy_set(i_Partition);
currentFis.Inputs(i_input).mf(i_Partition).params = [poInFs.support(1) poInFs.kernel(1) poInFs.kernel(2) poInFs.support(2)];
end
end
writeFIS(currentFis,simulink_fis);
sim(simulink_file);
% visualisation of the convergence
for i_criterias = 1:length(criterias)
P_results_bis(i_criterias,k_point) = eval(criterias{i_criterias});
end
printEvolutionCriterias(1,P_results_bis(:,k_point),k_point,criterias,markers_colors,0)
P_results(k_point) = eval(costFunction);
point(k_point).performance = P_results(k_point);
end
[Pg_result,Pg_index] = max(P_results);
bestFis = preconfig_fis_file_id;
for i_input = 1:numberOfInputs
for i_Partition = 1:length(currentFis.Inputs(i_input).mf)
PgInFs = point(Pg_index).input(i_input).fuzzy_set(i_Partition);
bestFis.Inputs(i_input).mf(i_Partition).params = [PgInFs.support(1) PgInFs.kernel(1) PgInFs.kernel(2) PgInFs.support(2)];
end
end
writeFIS(bestFis,[folder '/best_global_1'])
Pg = point(Pg_index);
Pg_criterias = P_results_bis(:,Pg_index);
printEvolutionCriterias(1,Pg_criterias,10,criterias,markers_colors,1);
initial_nearest_points_limit = initNetworkParameters(preconfig_fis_file_id);
for k_point = 1:n_points
point(k_point).nearest_points_limit = initial_nearest_points_limit;
distance = computeEuclidDistance(point,k_point);
point = computeNetwork(point,k_point,distance);
end
end