-
Notifications
You must be signed in to change notification settings - Fork 94
/
main.py
630 lines (564 loc) · 31.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import torch
import argparse
import sys
import os
import pandas as pd
from nerf.provider import NeRFDataset, generate_grid_points
from nerf.utils import *
import yaml
from easydict import EasyDict as edict
import dnnultis
import logging
logger = logging.getLogger(__name__)
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(
description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='3D AIGC Training')
parser.add_argument('--workspace', type=str, default='', help='path to log')
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--negative', default='', type=str,
help="negative text prompt")
parser.add_argument('--dir_texts_neg', action='store_true',
help="enable negative directional text")
parser.add_argument('--check_prompt', action='store_true', help="check prompt")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray")
parser.add_argument('-O2', action='store_true',
help="equals --backbone vanilla")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--six_views', action='store_true',
help="six_views mode: save the images of the six views")
parser.add_argument('--eval_interval', type=int, default=1,
help="evaluate on the valid set every interval epochs")
parser.add_argument('--test_interval', type=int, default=50,
help="test on the test set every interval epochs")
parser.add_argument('--seed', type=int, default=101)
parser.add_argument('--log_every', type=int, default=20,
help="log losses every X iterations")
parser.add_argument('--use_wandb', action='store_true',
help="log online into wandb")
# guidance
parser.add_argument('--guidance', type=str, nargs='*',
default=['SD'], help='guidance model')
parser.add_argument('--guidance_scale', type=float, nargs='*', default=[100],
help="diffusion model classifier-free guidance scale")
parser.add_argument('--gudiance_spatial_weighting',
action='store_true', help="add spatial weighting to guidance")
parser.add_argument('--save_train_every', type=int,
default=-1, help="save sds guidance")
# clip guidance
# lambda_clip, set to 1 if use clip loss outside sds
parser.add_argument('--lambda_clip', type=float, default=0,
help="loss scale for clip loss outside sds")
# set to 100 if use clip guidance in sds
parser.add_argument('--clip_version', type=str,
default='large', help="clip version, large is ued in stable diffusion")
parser.add_argument('--clip_guidance', type=float, default=0,
help="diffusion model classifier-free guidance scale")
parser.add_argument('--clip_t', type=float, default=0.4,
help="time step thresh started to use clip")
parser.add_argument('--clip_iterative', action='store_true',
help="use clipd iteratively with sds")
parser.add_argument('--clip_image_loss', action='store_true',
help="use image as reference in clip")
parser.add_argument('--save_guidance_every', type=int,
default=-1, help="save sds guidance")
# 3D prior: Shap-E. Does not work.
parser.add_argument('--use_shape', action='store_true',
help="enable shap-e initization")
parser.add_argument('--shape_guidance', type=float, default=3,
help="guidance scaling for shap-e prior")
parser.add_argument('--shape_radius', type=float, default=4,
help="camera raidus for shap-e prior")
parser.add_argument('--shape_fovy', type=float, default=40,
help="fov for shap-e prior")
parser.add_argument('--shape_no_color', action='store_false',
dest='shape_init_color', help="do not use shap-E color for initization")
parser.add_argument('--shape_rpst', type=str, default='sdf',
help="use sdf to init NeRF/mesh by default")
# image options.
parser.add_argument('--image', default=None, help="image prompt")
parser.add_argument('--image_config', default=None, help="image config csv")
parser.add_argument('--learned_embeds_path', type=str,
default=None, help="path to learned embeds of the given image")
parser.add_argument('--known_iters', type=int, default=100,
help="loss scale for alpha entropy")
parser.add_argument('--known_view_interval', type=int, default=4,
help="do reconstruction every X iterations to save on compute")
parser.add_argument('--bg_color_known', type=str,
default=None, help='pixelnoise, noise, None') # pixelnoise
parser.add_argument('--known_shading', type=str, default='lambertian')
# DMTet and Mesh options
parser.add_argument('--save_mesh', action='store_true',
help="export an obj mesh with texture")
parser.add_argument('--mcubes_resolution', type=int, default=256,
help="mcubes resolution for extracting mesh")
parser.add_argument('--decimate_target', type=int, default=5e4,
help="target face number for mesh decimation")
parser.add_argument('--dmtet', action='store_true',
help="use dmtet finetuning")
parser.add_argument('--tet_mlp', action='store_true',
help="use tet_mlp finetuning")
parser.add_argument('--base_mesh', default=None,
help="base mesh for dmtet init")
parser.add_argument('--tet_grid_size', type=int,
default=256, help="tet grid size")
parser.add_argument('--init_ckpt', type=str, default='',
help="ckpt to init dmtet")
parser.add_argument('--lock_geo', action='store_true',
help="disable dmtet to learn geometry")
# training options
parser.add_argument('--iters', type=int, default=5000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="max learning rate")
parser.add_argument('--lr_scale_nerf', type=float,
default=1, help="max learning rate")
parser.add_argument('--lr_scale_texture', type=float,
default=1, help="max learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true',
help="use CUDA raymarching instead of pytorch")
parser.add_argument('--taichi_ray', action='store_true',
help="use taichi raymarching")
parser.add_argument('--max_steps', type=int, default=1024,
help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64,
help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=32,
help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16,
help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096,
help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--latent_iter_ratio', type=float, default=0.0,
help="training iters that only use latent normal shading")
parser.add_argument('--normal_iter_ratio', type=float, default=0.0,
help="training iters that only use normal shading")
parser.add_argument('--textureless_iter_ratio', type=float, default=0.0,
help="training iters that only use textureless shading")
parser.add_argument('--albedo_iter_ratio', type=float, default=0,
help="training iters that only use albedo shading")
parser.add_argument('--warmup_bg_color', type=str, default=None,
help="bg color [None | pixelnoise | noise | white]")
parser.add_argument('--bg_color', type=str, default=None)
parser.add_argument('--bg_color_test', default='white')
parser.add_argument('--ema_decay', type=float, default=0.95,
help="exponential moving average of model weights")
parser.add_argument('--jitter_pose', action='store_true',
help="add jitters to the randomly sampled camera poses")
parser.add_argument('--jitter_center', type=float, default=0.2,
help="amount of jitter to add to sampled camera pose's center (camera location)")
parser.add_argument('--jitter_target', type=float, default=0.2,
help="amount of jitter to add to sampled camera pose's target (i.e. 'look-at')")
parser.add_argument('--jitter_up', type=float, default=0.02,
help="amount of jitter to add to sampled camera pose's up-axis (i.e. 'camera roll')")
parser.add_argument('--uniform_sphere_rate', type=float, default=0.5,
help="likelihood of sampling camera location uniformly on the sphere surface area")
parser.add_argument('--grad_clip', type=float, default=-1,
help="clip grad of all grad to this limit, negative value disables it")
parser.add_argument('--grad_clip_rgb', type=float, default=-1,
help="clip grad of rgb space grad to this limit, negative value disables it")
parser.add_argument('--grid_levels_mask', type=int, default=8,
help="the number of levels in the feature grid to mask (to disable use 0)")
parser.add_argument('--grid_levels_mask_iters', type=int, default=3000,
help="the number of iterations for feature grid masking (to disable use 0)")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4,
help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_activation', type=str, default='exp',
choices=['softplus', 'exp', 'relu'], help="density activation function")
parser.add_argument('--density_thresh', type=float, default=10,
help="threshold for density grid to be occupied")
# add more strength to the center, believe the center is more likely to have objects.
parser.add_argument('--blob_density', type=float, default=10,
help="max (center) density for the density blob")
parser.add_argument('--blob_radius', type=float, default=0.2,
help="control the radius for the density blob")
# network backbone
parser.add_argument('--backbone', type=str, default='grid',
choices=['grid', 'vanilla', 'grid_taichi'], help="nerf backbone")
parser.add_argument('--grid_type', type=str,
default='hashgrid', help="grid type")
parser.add_argument('--hidden_dim_bg', type=int, default=32,
help="channels for background network")
parser.add_argument('--optim', type=str, default='adam',
choices=['adan', 'adam'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='1.5',
choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None,
help="hugging face Stable diffusion model key")
# try this if CUDA OOM
parser.add_argument('--fp16', action='store_true',
help="use float16 for training")
parser.add_argument('--vram_O', action='store_true',
help="optimization for low VRAM usage")
# rendering resolution in training, increase these for better quality / decrease these if CUDA OOM even if --vram_O enabled.
parser.add_argument('--w', type=int, default=128,
help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=128,
help="render height for NeRF in training")
parser.add_argument('--known_view_scale', type=float, default=1.5,
help="multiply --h/w by this for known view rendering")
parser.add_argument('--known_view_noise_scale', type=float, default=1e-3,
help="random camera noise added to rays_o and rays_d")
parser.add_argument('--noise_known_camera_annealing', action='store_true',
help="anneal the noise to zero over the coarse of training")
parser.add_argument('--dmtet_reso_scale', type=float, default=8,
help="multiply --h/w by this for dmtet finetuning")
parser.add_argument('--rm_edge', action='store_true',
help="remove edge (ideally only enale for high resolution cases)")
parser.add_argument('--edge_threshold', type=float, default=0.1,
help="remove edges with value > threshold")
parser.add_argument('--edge_width', type=float, default=5,
help="edge width")
parser.add_argument('--batch_size', type=int, default=1,
help="images to render per batch using NeRF")
# dataset options
parser.add_argument('--bound', type=float, default=1.0,
help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0,
help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1,
help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*',
default=[1.8, 1.8], help="training camera radius range")
parser.add_argument('--theta_range', type=float, nargs='*',
default=[45, 135], help="training camera elevation/polar range, 90 is front")
parser.add_argument('--phi_range', type=float, nargs='*',
default=[-180, 180], help="training camera azimuth range")
parser.add_argument('--fovy_range', type=float, nargs='*',
default=[40, 40], help="training camera fovy range")
parser.add_argument('--default_radius', type=float, default=1.8,
help="radius for the default view")
parser.add_argument('--default_polar', type=float,
default=90, help="polar for the default view")
parser.add_argument('--default_azimuth', type=float,
default=0, help="azimuth for the default view")
parser.add_argument('--default_fovy', type=float, default=40,
help="fovy for the default view")
parser.add_argument('--progressive_view', action='store_true',
help="progressively expand view sampling range from default to full")
parser.add_argument('--progressive_level', action='store_true',
help="progressively increase gridencoder's max_level")
parser.add_argument('--angle_overhead', type=float, default=30,
help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60,
help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
parser.add_argument('--t_range', type=float, nargs='*',
default=[0.2, 0.6], help="stable diffusion time steps range")
# regularizations
parser.add_argument('--lambda_entropy', type=float, default=1e-3,
help="loss scale for alpha entropy, favors 0 or 1")
# Try increasing/decreasing lambda_opacity if your scene is stuffed with floaters/becoming empty.
parser.add_argument('--lambda_opacity', type=float, default=0.,
help="loss scale for alpha value, avoid uncessary filling")
# Try increasing/decreasing lambda_orient if you object is foggy/over-smoothed.
parser.add_argument('--lambda_orient', type=float,
default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_tv', type=float, default=0,
help="loss scale for total variation of grad")
parser.add_argument('--lambda_wd', type=float, default=0,
help="loss scale for weight decay of grad")
parser.add_argument('--lambda_normal_smooth', type=float, default=0.5,
help="loss scale for first-order 2D normal image smoothness")
parser.add_argument('--lambda_normal_smooth2d', type=float, default=0.5,
help="loss scale for second-order 2D normal image smoothness")
parser.add_argument('--lambda_3d_normal_smooth', type=float, default=0.0,
help="loss scale for second-order 2D normal image smoothness")
parser.add_argument('--lambda_guidance', type=float, nargs='*',
default=[1], help="loss scale for SDS")
parser.add_argument('--lambda_rgb', type=float,
default=5, help="loss scale for RGB")
parser.add_argument('--lambda_mask', type=float, default=0.5,
help="loss scale for mask (alpha)")
parser.add_argument('--lambda_depth', type=float, default=0.01,
help="loss scale for relative depth of the known view")
parser.add_argument('--lambda_normal', type=float,
default=0.0, help="loss scale for normals of the known view")
parser.add_argument('--lambda_depth_mse', type=float, default=0.0,
help="loss scale for depth of the known view")
parser.add_argument('--no_normalize_depth', action='store_false', dest='normalize_depth', help="normalize depth")
# for DMTet
parser.add_argument('--lambda_mesh_normal', type=float,
default=0.1, help="loss scale for mesh normal smoothness")
parser.add_argument('--lambda_mesh_lap', type=float,
default=0.1, help="loss scale for mesh laplacian")
# GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=1.8,
help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=40,
help="default GUI camera fovy")
parser.add_argument('--light_theta', type=float, default=60,
help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0,
help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1,
help="GUI rendering max sample per pixel")
parser.add_argument('--zero123_config', type=str,
default='./pretrained/zero123/sd-objaverse-finetune-c_concat-256.yaml', help="config file for zero123")
parser.add_argument('--zero123_ckpt', type=str,
default='./pretrained/zero123/105000.ckpt', help="ckpt for zero123")
parser.add_argument('--zero123_grad_scale', type=str, default='angle',
help="whether to scale the gradients based on 'angle' or 'None'")
parser.add_argument('--dataset_size_train', type=int, default=100,
help="Length of train dataset i.e. # of iterations per epoch")
parser.add_argument('--dataset_size_valid', type=int, default=8,
help="# of frames to render in the turntable video in validation")
parser.add_argument('--dataset_size_test', type=int, default=100,
help="# of frames to render in the turntable video at test time")
def _parse_args():
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
if __name__ == '__main__':
args, args_text = _parse_args()
opt = edict(vars(args))
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
elif opt.O2:
opt.fp16 = True
opt.backbone = 'vanilla'
opt.images, opt.ref_radii, opt.ref_polars, opt.ref_azimuths, opt.zero123_ws = [], [], [], [], []
opt.default_zero123_w = 1
# parameters for image-conditioned generation
if opt.image is not None or opt.image_config is not None:
if 'zero123' in opt.guidance:
# fix fov as zero123 doesn't support changing fov
opt.fovy_range = [opt.default_fovy, opt.default_fovy]
else:
opt.known_view_interval = 2
if 'SD' in opt.guidance:
opt.t_range = [0.2, 0.6]
opt.bg_radius = -1
# latent warmup is not needed
opt.latent_iter_ratio = 0
opt.albedo_iter_ratio = 0
if opt.image is not None:
opt.images += [opt.image]
opt.ref_radii += [opt.default_radius]
opt.ref_polars += [opt.default_polar]
opt.ref_azimuths += [opt.default_azimuth]
opt.zero123_ws += [opt.default_zero123_w]
if opt.image_config is not None:
# for multiview (zero123)
conf = pd.read_csv(opt.image_config, skipinitialspace=True)
opt.images += list(conf.image)
opt.ref_radii += list(conf.radius)
opt.ref_polars += list(conf.polar)
opt.ref_azimuths += list(conf.azimuth)
opt.zero123_ws += list(conf.zero123_weight)
if opt.image is None:
opt.default_radius = opt.ref_radii[0]
opt.default_polar = opt.ref_polars[0]
opt.default_azimuth = opt.ref_azimuths[0]
opt.default_zero123_w = opt.zero123_ws[0]
# reset to None
if len(opt.images) == 0:
opt.images = None
# default parameters for finetuning
if opt.dmtet:
opt.h = int(opt.h * opt.dmtet_reso_scale)
opt.w = int(opt.w * opt.dmtet_reso_scale)
opt.known_view_scale = 1
opt.grid_levels_mask = -1 # disable corse nerf (fine to keep, not necesary)
opt.t_range = [0.02, 0.50] # ref: magic3D
if opt.images is not None:
opt.lambda_normal = 0
opt.lambda_depth = 0
# assume finetuning
opt.latent_iter_ratio = 0
opt.textureless_iter_ratio = 0
opt.albedo_iter_ratio = 0
opt.normal_iter_ratio = 0
opt.progressive_view = False
opt.progressive_level = False
# record full range for progressive view expansion
if opt.progressive_view:
# disable as they disturb progressive view
opt.jitter_pose = False
opt.uniform_sphere_rate = 0
# back up full range
opt.full_radius_range = opt.radius_range
opt.full_theta_range = opt.theta_range
opt.full_phi_range = opt.phi_range
opt.full_fovy_range = opt.fovy_range
opt.use_clip = opt.clip_guidance > 0 or opt.lambda_clip > 0
# Do not support Shap-E for NeRF yet.
opt.use_shape = False if not opt.dmtet else opt.use_shape
# workspace prepare
setup_workspace(opt)
dnnultis.setup_logging(opt.log_path)
if opt.seed < 0:
opt.seed = random.randint(0, 10000)
seed_everything(int(opt.seed))
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'grid':
from nerf.network_grid import NeRFNetwork
elif opt.backbone == 'grid_tcnn':
from nerf.network_grid_tcnn import NeRFNetwork
elif opt.backbone == 'grid_taichi':
opt.cuda_ray = False
opt.taichi_ray = True
import taichi as ti
from nerf.network_grid_taichi import NeRFNetwork
taichi_half2_opt = True
taichi_init_args = {"arch": ti.cuda, "device_memory_GB": 4.0}
if taichi_half2_opt:
taichi_init_args["half2_vectorization"] = True
ti.init(**taichi_init_args)
else:
raise NotImplementedError(
f'--backbone {opt.backbone} is not implemented!')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
opt.device = device
model = NeRFNetwork(opt).to(device)
if opt.init_ckpt != '':
if not os.path.exists(opt.init_ckpt):
logger.warning(f'ckpt {opt.init_ckpt} is not found')
else:
# load pretrained weights to init dmtet
state_dict = torch.load(opt.init_ckpt, map_location=device)
model.load_state_dict(state_dict['model'], strict=False)
if opt.cuda_ray:
model.mean_density = state_dict['mean_density']
logger.info(f'init from {opt.init_ckpt}...')
# if init ckpt is provided, we assume the color network is well learned and do not need base_mesh init
opt.shape_init_color = False
opt.base_mesh = None
if opt.use_shape and opt.dmtet:
# now only supports shape for dmtet init
from guidance.shape_utils import get_shape_from_image
opt.points = generate_grid_points(
128, device=device) if not opt.dmtet else model.dmtet.verts
opt.rpsts, opt.colors = get_shape_from_image(
opt.image.replace('rgba', 'rgb'),
opt.points,
rpst_type=opt.shape_rpst,
get_color=opt.shape_init_color,
shape_guidance=opt.shape_guidance, device=device)
scale = opt.default_radius / opt.shape_radius * \
np.tan(np.deg2rad(opt.default_fovy / 2)) / \
np.tan(np.deg2rad(opt.shape_fovy / 2))
if opt.dmtet:
model.dmtet.reset_tet_scale(scale)
else:
opt.points *= scale
logger.info(f'Got sdf from Shap-E init...')
logger.info(model)
if opt.six_views:
guidance = None # no need to load guidance model at test
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device,
workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
test_loader = NeRFDataset(
opt, device=device, type='six_views', H=opt.H, W=opt.W, size=6).dataloader(batch_size=1)
trainer.test(test_loader, write_video=False)
if opt.save_mesh:
trainer.save_mesh()
elif opt.test:
guidance = None # no need to load guidance model at test
trainer = Trainer(' '.join(sys.argv), os.path.basename(opt.workspace), opt, model, guidance,
device=device, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
if opt.gui:
from nerf.gui import NeRFGUI
gui = NeRFGUI(opt, trainer)
gui.render()
else:
test_loader = NeRFDataset(
opt, device=device, type='test', H=opt.H, W=opt.W, size=opt.dataset_size_test).dataloader()
trainer.test(test_loader)
trainer.test(test_loader, shading='normal') # save normal
if opt.save_mesh:
try:
trainer.save_mesh()
except:
pass
else:
train_loader = NeRFDataset(
opt, device=device, type='train', H=opt.h, W=opt.w, size=opt.dataset_size_train * opt.batch_size).dataloader()
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
def optimizer(model): return Adan(model.get_params(
5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else: # adam
def optimizer(model): return torch.optim.Adam(
model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
if opt.backbone == 'vanilla':
def scheduler(optimizer): return optim.lr_scheduler.LambdaLR(
optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
else:
def scheduler(optimizer): return optim.lr_scheduler.LambdaLR(
optimizer, lambda iter: 1) # fixed
guidance = nn.ModuleDict()
lambda_guidance, guidance_scale = {}, {}
for idx, guidance_type in enumerate(opt.guidance):
lambda_guidance[guidance_type] = opt.lambda_guidance[idx] if idx < len(
opt.lambda_guidance) else opt.lambda_guidance[-1]
guidance_scale[guidance_type] = opt.guidance_scale[idx] if idx < len(
opt.guidance_scale) else opt.guidance_scale[-1]
if 'SD' == guidance_type:
from guidance.sd_utils import StableDiffusion, token_replace
guidance['SD'] = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key, opt.t_range,
learned_embeds_path=opt.learned_embeds_path,
use_clip=opt.use_clip, clip_t=opt.clip_t, clip_iterative=opt.clip_iterative, clip_version=opt.clip_version,
)
if opt.learned_embeds_path is not None and os.path.exists(opt.learned_embeds_path): # add textual inversion tokens to model
opt.text, opt.negative = token_replace(
opt.text, opt.negative, opt.learned_embeds_path)
logger.info(
f'prompt: {opt.text}, negative: {opt.negative}')
if opt.check_prompt:
guidance['SD'].check_prompt(opt)
else:
opt.text = opt.text.replace('<token>', os.path.basename(os.path.dirname(opt.image)))
logger.warning('No learned_embeds_path provided, using the folowing pure text prompt with degraded performance: ' + opt.text)
if 'IF' == guidance_type:
from guidance.if_utils import IF
guidance['IF'] = IF(device, opt.vram_O, opt.t_range)
if 'zero123' == guidance_type:
from guidance.zero123_utils import Zero123
guidance['zero123'] = Zero123(device=device, fp16=opt.fp16, config=opt.zero123_config,
ckpt=opt.zero123_ckpt, vram_O=opt.vram_O, t_range=opt.t_range, opt=opt)
if 'clip' == guidance_type:
from guidance.clip_utils import CLIP
guidance['clip'] = CLIP(device)
opt.lambda_guidance = lambda_guidance
opt.guidance_scale = guidance_scale
logger.info(opt)
trainer = Trainer(' '.join(sys.argv), os.path.basename(opt.workspace), opt, model,
guidance,
device=device, workspace=opt.workspace, optimizer=optimizer,
ema_decay=opt.ema_decay, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, scheduler_update_every_step=True)
trainer.default_view_data = train_loader._data.get_default_view_data()
if opt.gui:
from nerf.gui import NeRFGUI
gui = NeRFGUI(opt, trainer, train_loader)
gui.render()
else:
valid_loader = NeRFDataset(
opt, device=device, type='val', H=opt.H, W=opt.W, size=opt.dataset_size_valid).dataloader()
test_loader = NeRFDataset(
opt, device=device, type='test', H=opt.H, W=opt.W, size=opt.dataset_size_test).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.train(train_loader, valid_loader, test_loader, max_epoch)
trainer.test(test_loader)
trainer.test(test_loader, shading='normal') # save normal
if opt.save_mesh:
try:
trainer.save_mesh()
except:
pass