-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
124 lines (96 loc) · 3.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import nltk
nltk.download('punkt')
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
import random
import json
import pickle
with open('intents.json') as file:
data = json.load(file)
try:
with open("data.pickle","rb") as f:
words,labels,training,output=pickle.load(f)
except:
words = []
labels =[]
docs =[]
docs_x =[]
docs_y =[]
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x,doc in enumerate(docs_x):
bag=[]
wrds=[stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.compat.v1.reset_default_graph() # get rid of previous settings and stuffs(underlying data graphs)
net = tflearn.input_data(shape=[None,len(training[0])])
net = tflearn.fully_connected(net,8)
net = tflearn.fully_connected(net,8)
net = tflearn.fully_connected(net,len(output[0]),activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training,output,n_epoch=1000,batch_size=8,show_metric=True)
model.save("model.tflearn")
# - Get some input from the user
# – Convert it to a bag of words
# – Get a prediction from the model
# – Find the most probable class
# – Pick a response from that class
# The bag_of_words function will transform our string input to a bag of words using our created words list.
# The chat function will handle getting a prediction from the model and grabbing an appropriate response from our JSON file of responses.
def bag_of_words(s,words):
bag=[0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i,w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp,words)])[0]
results_index = numpy.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.7:
for tg in data["intents"]:
if tg["tag"] == tag:
responses= tg['responses']
print(random.choice(responses))
else:
print("I can not understand, try again")
chat()