-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfull8020.py
75 lines (61 loc) · 3.17 KB
/
full8020.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#detailed 8020 to include analysis of trigger
import pandas as pd
import basedf as basedf
def full8020(prioropen, priorhigh, priorlow, priorclose, todayopen, high, low, close):
min_perc = 0.20
max_perc = 0.80
priordayrange = priorhigh - priorlow
if priordayrange == 0:
r = 'notrade'
else:
o_perc = (prioropen - priorlow)/priordayrange
c_perc = (priorclose - priorlow)/priordayrange
#only need to check non gaps for triggers
if prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen < priorlow and low <= priorlow and close > priorlow:
r = 'long_yesgap_win'
elif prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen >= priorlow and low <= priorlow and close > priorlow:
r = 'long_nogap_trigger_win'
elif prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen >= priorlow and low > priorlow and close > priorlow:
r = 'notrigger'
elif prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen < priorlow and close <= priorlow:
r = 'long_yesgap_loss'
elif prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen >= priorlow and low <= priorlow and close <= priorlow:
r = 'long_nogap_trigger_loss'
elif prioropen > priorclose and c_perc < min_perc and o_perc > max_perc \
and todayopen >= priorlow and low > priorlow and close <= priorlow:
r = 'notrigger'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen > priorhigh and close < priorhigh:
r = 'short_yesgap_win'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen <= priorhigh and high >= priorhigh and close < priorhigh:
r = 'short_nogap_trigger_win'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen <= priorhigh and high < priorhigh and close < priorhigh:
r = 'notrigger'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen > priorhigh and close >= priorhigh:
r = 'short_yesgap_loss'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen <= priorhigh and high >= priorhigh and close >= priorhigh:
r = 'short_nogap_trigger_loss'
elif priorclose > prioropen and c_perc > max_perc and o_perc < min_perc \
and todayopen <= priorhigh and high < priorhigh and close >= priorhigh:
r = 'notrigger'
else:
r = 'notrigger'
return r
def runfull8020test(df):
df['TradeGap8020'] = df.apply(lambda x: full8020(x['PriorOpen']
,x['PriorHigh'],x['PriorLow'],x['PriorClose'],x['Open']
,x['High'],x['Low'],x['Close']),axis=1)
table = pd.pivot_table(df, index=['TradeGap8020'], aggfunc='count')
print(table['Close'])
if __name__ == "__main__":
df = basedf.prepcoredata()
runfull8020test(df)