Skip to content

Latest commit

 

History

History
47 lines (34 loc) · 1.86 KB

README.md

File metadata and controls

47 lines (34 loc) · 1.86 KB

RaceClassification

This repository does race classification using 4 state-of-the-art models, including Resnet50,Resnet101,InceptionNet and WS-DAN (Fine-Grained Visual Classification). (Hu et al., "See Better Before Looking Closer: Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification", arXiv:1901.09891)

We encounter 4 races; African,Asian,Caucasian,South Asian (Indian)

System Requirements

  • Pytorch
  • Scikit-learn
  • Plotly

Dataset Preparation

We use Racial Faces in the Wild (RFW) dataset for training and test. We subsample the dataset, yielding about 40.000 images for training. Train set is race balance but not gender balance. To download dataset,you should get permission from this link. We will share pre-trained models in the models directory.

Sampled Dataset Statistics

Model Train and Test

python train_wsdan.py --save-dir models/wsdan/  
#state of the art algorithms training
python train_sota.py --model resnet100
python train_sota.py --model resnet101
python train_sota.py --model inception
python test_wsdan.py --evalckpt models/wsdan/003.ckpt 
python test_sota.py --model resnet50 --ckpt models/model.ckpt
python test_sota.py --model resnet101 --ckpt models/model.ckpt
python test_sota.py --model inception --ckpt models/model.ckpt

Results

Model Name African Asian Caucasian Indian Average
Resnet50 96,09 94,74 88,77 91,21 92,7025
Resnet101 97,59 93,38 88,75 90,69 92,6025
Inception 96,06 88,42 87,07 86,06 89,4025
WSDAN 97,77 93,84 94,48 88,82 93,7250z

Confusion Matrices

Classifiers Confusion Matrices