forked from lsmcolab/adleap-mas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_round.py
210 lines (177 loc) · 7.87 KB
/
experiment_round.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Code to run experiments in AdLeap-MAS
- Sections:
A. IMPORTS
B. ARGS PARSE
C. AUX FUNCTIONS
D. MAIN SCRIPT
"""
###
# A. IMPORTS
###
import numpy as np
import sys
sys.path.append('src/reasoning')
sys.path.append('src/reasoning/levelbased')
sys.path.append('src/reasoning/capturetheprey')
from scenario_generator import *
from src.reasoning.estimation import aga_estimation, abu_estimation, oeate_estimation, pomcp_estimation
from src.log import BashLogFile, LogFile
###
# B. ARGS PARSE
###
# Getting the experiment setup via argument parsing
from argparse import ArgumentParser, ArgumentTypeError
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
parser = ArgumentParser()
parser.add_argument('--env', dest='env', default='LevelForagingEnv', type=str,
help='Environment name - LevelForagingEnv, CaptureEnv')
parser.add_argument('--estimation',dest='estimation',default='OEATE',type=str,help="Estimation type (AGA/ABU/OEATE/POMCP) ")
parser.add_argument('--num_agents',dest='agents', default = 7, type = int, help = "Number of agents")
parser.add_argument('--num_tasks',dest='tasks',default=20,type=int,help = "Number of Tasks")
parser.add_argument('--dim',dest='dim',default=20,type=int,help="Dimension")
parser.add_argument('--num_exp',dest = 'num_exp',default=0,type=int,help='number of experiments')
parser.add_argument('--num_episodes',dest='num_episodes',type=int,default=200,help="number of episodes")
parser.add_argument('--po',dest='po',type=str2bool,default=False,help="Partial Observability (True/False) ")
parser.add_argument('--display',dest='display',type=str2bool,nargs='?',const=True,default=False,help="Display (True/False) ")
args = parser.parse_args()
print(args)
###
# C. AUX FUNCTIONS
###
def list_stats(env, accomplished_tasks):
stats = {}
stats['iteration'] = env.episode
stats['completion'] = accomplished_tasks
stats['environment'] = args.env
stats['estimation'] = args.estimation
stats['actual_radius'] = [a.radius for a in env.components['agents'] if a.index != '0']
stats['actual_angle'] = [a.angle for a in env.components['agents'] if a.index != '0']
if args.env == "LevelForagingEnv":
stats['actual_level'] = [a.level for a in env.components['agents'] if a.index != '0']
else:
stats['actual_level'] = np.zeros(len(env.components['agents'])-1)
stats['actual_type'] = [a.type for a in env.components['agents'] if a.index != '0']
adhoc_agent = env.get_adhoc_agent()
type_probabilities, estimated_parameters =\
adhoc_agent.smart_parameters['estimation'].get_estimation(env)
stats['est_radius'], stats['est_angle'], stats['est_level'] = [], [], []
for i in range(len(env.components['agents'])-1):
stats['est_radius'].append([estimated_parameters[i][j][0] for j in range(len(adhoc_agent.smart_parameters['estimation'].template_types))])
stats['est_angle'].append([estimated_parameters[i][j][1] for j in range(len(adhoc_agent.smart_parameters['estimation'].template_types))])
if args.env == 'LevelForagingEnv':
stats['est_level'].append([estimated_parameters[i][j][2] for j in range(len(adhoc_agent.smart_parameters['estimation'].template_types))])
else:
stats['est_level'].append(list(np.zeros(len(adhoc_agent.smart_parameters['estimation'].template_types))))
stats['type_probabilities'] = type_probabilities
return stats
###
# D. MAIN SCRIPT
###1. Initialising the log file
header = ["Iterations","Completion","Environment","Estimation","Actual Radius","Actual Angle","Actual Level", "Actual Types", "Radius Est.", "Angle Est.","Level Est.","Type Prob."]
fname = "Round_{}_a{}_i{}_dim{}_{}_exp{}.csv".format(args.env,args.agents,args.tasks,args.dim,args.estimation,args.num_exp)
log_file = LogFile(None,fname,header)
#bashlog_file = BashLogFile(fname)
# 2. Creating the environment
env = None
if os.path.isdir("./src/envs/maps"):
if os.path.isdir("./src/envs/maps/"+args.env):
map_path = './src/envs/maps/'+args.env +'/' + str(args.dim) + str(args.agents) +\
str(args.tasks) + str(args.num_exp) + '.pickle'
if os.path.isfile(map_path):
if args.env == 'LevelForagingEnv':
env = load_LevelForagingEnv(args.dim,args.agents,args.tasks,args.num_exp)
elif args.env == 'CaptureEnv':
env = load_CaptureEnv(args.dim,args.agents,args.tasks,args.num_exp)
else:
raise NotImplemented
if env is None:
if args.env == 'LevelForagingEnv':
env = create_LevelForagingEnv(args.dim,args.agents,args.tasks,args.po,args.display, args.num_exp)
elif args.env == 'CaptureEnv':
env = create_CaptureEnv(args.dim,args.agents,args.tasks,args.po,args.display, args.num_exp)
else:
raise NotImplemented
state = env.reset()
# 3. Estimation algorithm's settings
estimation_mode = args.estimation
adhoc_agent = env.get_adhoc_agent()
if args.estimation == 'AGA':
adhoc_agent.smart_parameters['estimation_args'] =\
get_env_types(args.env), get_env_parameters_minmax(args.env)
estimation_method = aga_estimation
elif args.estimation == 'ABU':
adhoc_agent.smart_parameters['estimation_args'] =\
get_env_types(args.env), get_env_parameters_minmax(args.env)
estimation_method = abu_estimation
elif args.estimation == 'OEATE':
adhoc_agent.smart_parameters['estimation_args'] =\
get_env_types(args.env), get_env_parameters_minmax(args.env),\
100, 2, 0.2, 100, np.mean
estimation_method = oeate_estimation
elif args.estimation == 'POMCP':
adhoc_agent.smart_parameters['estimation_args'] =\
get_env_types(args.env), get_env_parameters_minmax(args.env)
estimation_method = pomcp_estimation
else:
estimation_method = None
# 4. Starting the experiment
done = False
exp_round = 0
tasks_per_round = int(args.tasks/2) if int(args.tasks/2) > 0 else 1
env.display = args.display
print(args.env," Visibility:",env.visibility, " Display:",env.display)
for i in range(len(env.components['tasks'])):
if i != (tasks_per_round*exp_round) % len(env.components['tasks']) and\
i != (tasks_per_round*exp_round+1) % len(env.components['tasks']):
env.components['tasks'][i].completed = True
else:
env.components['tasks'][i].completed = False
accomplished_tasks = 0
###
# EXPERIMENT START
###
#bashlog_file.redirect_stderr()
while env.episode < args.num_episodes:
# Rendering the environment
if env.display:
env.render()
print("Episode : "+str(env.episode))
# Main Agent taking an action
print("Main Agent planning")
module = __import__(adhoc_agent.type)
method = getattr(module, adhoc_agent.type+'_planning')
adhoc_agent.next_action, adhoc_agent.target = method(state, adhoc_agent, estimation_algorithm=estimation_method)
if env.episode == 0:
stats = list_stats(env, accomplished_tasks)
log_file.write(None, stats)
# Step on environment
print("Simulation Step")
state, reward, done, info = env.step(adhoc_agent.next_action)
just_finished_tasks = info['just_finished_tasks']
accomplished_tasks += len(just_finished_tasks)
# Writing log
print("Log\n")
stats = list_stats(env, accomplished_tasks)
log_file.write(None, stats)
# Verifying the end condition
if done:
exp_round += 1
for i in range(len(env.components['tasks'])):
if i != (tasks_per_round*exp_round) % len(env.components['tasks']) and\
i != (tasks_per_round*exp_round+1) % len(env.components['tasks']):
env.components['tasks'][i].completed = True
else:
env.components['tasks'][i].completed = False
#bashlog_file.reset_stderr()
###
# EXPERIMENT END
###