forked from jeunsom/TDA_KD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ad.py
405 lines (320 loc) · 13.1 KB
/
train_ad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import copy
import torch
import argparse
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
#from data_loader import get_cifar
from data_loader_custom import get_cifar, get_PAMAP2_data, get_PAMAP2_data3, get_PAMAP2_data4
from model_factory import create_cnn_model, is_resnet
from sklearn.metrics import classification_report, confusion_matrix
import time
import datetime
from torchsummary import summary
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
else:
return False
def parse_arguments():
parser = argparse.ArgumentParser(description='TA Knowledge Distillation Code')
parser.add_argument('--epochs', default=200, type=int, help='number of total epochs to run')
parser.add_argument('--dataset', default='cifar100', type=str, help='dataset. can be either cifar10 or cifar100')
parser.add_argument('--batch_size', default=128, type=int, help='batch_size')
parser.add_argument('--learning-rate', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='SGD momentum')
parser.add_argument('--weight-decay', default=1e-4, type=float, help='SGD weight decay (default: 1e-4)')
parser.add_argument('--teacher', default='', type=str, help='teacher student name')
parser.add_argument('--student', '--model', default='resnet8', type=str, help='teacher student name')
parser.add_argument('--student-checkpoint', default='', type=str, help='optinal pretrained checkpoint for student')
parser.add_argument('--teacher-checkpoint', default='', type=str, help='optinal pretrained checkpoint for teacher')
parser.add_argument('--teacher2', default='', type=str, help='teacher student name')
parser.add_argument('--teacher-checkpoint2', default='', type=str, help='optinal pretrained checkpoint for teacher')
parser.add_argument('--cuda', default=False, type=str2bool, help='whether or not use cuda(train on GPU)')
parser.add_argument('--dataset-dir', default='./data', type=str, help='dataset directory')
parser.add_argument('--trial', default=0, type=str, help='trial memo number')
parser.add_argument('--sbj', default=0, type=int, help='sbj number')
parser.add_argument('--seed', default=1234, type=int, help='seed number')
parser.add_argument('--save_weight', default=0, type=int, help='save_default:0 save_flag:1')
args = parser.parse_args()
return args
def load_checkpoint(model, checkpoint_path):
"""
Loads weights from checkpoint
:param model: a pytorch nn student
:param str checkpoint_path: address/path of a file
:return: pytorch nn student with weights loaded from checkpoint
"""
model_ckp = torch.load(checkpoint_path)
model.load_state_dict(model_ckp['model_state_dict'])
return model
class TrainManager(object):
def __init__(self, student, teacher=None, teacher2=None, train_loader=None, test_loader=None, train_loader1=None, test_loader1=None, train_config={}):
self.student = student
self.teacher = teacher
self.teacher2 = teacher2
self.have_teacher = bool(self.teacher)
self.device = train_config['device']
self.name = train_config['name']
self.optimizer = optim.SGD(self.student.parameters(),
lr=train_config['learning_rate'],
momentum=train_config['momentum'],
weight_decay=train_config['weight_decay'])
if self.have_teacher:
self.teacher.eval()
self.teacher.train(mode=False)
self.teacher2.eval()
self.teacher2.train(mode=False)
self.train_loader = train_loader #signal
self.test_loader = test_loader
self.train_loader1 = train_loader1 #image
self.test_loader1 = test_loader1
self.config = train_config
def train(self):
lambda_ = 0.99
T = 4
epochs = self.config['epochs']
trial_id = self.config['trial_id']
max_val_acc = 0
iteration = 0
best_acc = 0
criterion = nn.CrossEntropyLoss()
save_flag = args.save_weight
for epoch in range(epochs):
start_time = time.time()
self.student.train()
lr = self.adjust_learning_rate(self.optimizer, epoch) #loss plan
loss = 0
CE_loss = 0.0
KD_loss = 0.0
T_loss = 0.0
count_iter = 0
CE_loss1 = 0.0
KD_loss1 = 0.0
T_loss1 = 0.0
CE_loss2 = 0.0
KD_loss2 = 0.0
T_loss2 = 0.0
c_iter = 0.0
for batch_idx, (data, signals, target) in enumerate(self.train_loader):
iteration += 1
data = data.to(self.device)
signals = signals.to(self.device)
target = target.to(self.device)
self.optimizer.zero_grad()
output = self.student(signals)
# Standard Learning Loss ( Classification Loss)
stds = torch.std(output, dim=-1, keepdim=True)
loss_SL = criterion(output / stds, target) #softmax entropy
loss = loss_SL
if self.have_teacher:
teacher_outputs2 = self.teacher2(signals)
teacher_outputs = self.teacher(data)
stdt = torch.std(teacher_outputs, dim=-1, keepdim=True)
loss_KD = nn.KLDivLoss()(F.log_softmax(output * 2.0/ stds, dim=1), F.softmax(teacher_outputs * 2.0/ stdt, dim=1))
stdt2 = torch.std(teacher_outputs2, dim=-1, keepdim=True)
loss_KD2 = nn.KLDivLoss()(F.log_softmax(output * 2.0/ stds, dim=1), F.softmax(teacher_outputs2 * 2.0/ stdt2, dim=1))
KD_loss1 += loss_KD * target.size(0)
KD_loss2 += loss_KD2 * target.size(0)
loss = (1 - lambda_) * loss_SL + 0.7 * lambda_ * T * T * loss_KD + 0.3 * lambda_ * T * T * loss_KD2
loss.backward()
self.optimizer.step()
T_loss1 += loss*target.size(0)
CE_loss1 += loss_SL*target.size(0)
count_iter += target.size(0)
c_iter += 1
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
current_time = datetime.datetime.now()
print(f'current_time: {current_time}')
best_buf = "%.4f" % (best_acc)
if self.have_teacher:
ls = T_loss1 / count_iter
l_KD = KD_loss1 / count_iter
l_CE = CE_loss1 / count_iter
l_KD2 = KD_loss2 / count_iter
print(f'"epoch {epoch}/{epochs} | Epoch Time: {epoch_mins}m {epoch_secs}s | lr: {lr:.7f} | ' \
f'loss {ls:.9f} loss_CE {l_CE:.9f} loss_KD {l_KD:.9f} loss_KD2 {l_KD2:.9f} | best_acc {best_buf}')
else:
ls = T_loss1 / count_iter
print(f'"epoch {epoch}/{epochs} | Epoch Time: {epoch_mins}m {epoch_secs}s | lr: {lr:.7f} | ' \
f'loss {ls:.9f} | best_acc {best_buf}')
val_acc = self.validate(step=epoch)
if val_acc > best_acc:
best_acc = val_acc
buf = "%.4f" % (val_acc)
if epoch >= 0 and save_flag > 0:
self.save(epoch, name='./test_model/{}_{}_ep{}_val{}_best.pth.tar'.format(self.name, trial_id, epoch, buf))
if epoch % 50 == 0 or epoch == 20:
buf = "%.4f" % (val_acc)
if epoch >= 30 and save_flag > 0:
self.save(epoch, name='./test_model/{}_{}_ep{}_val{}_current.pth.tar'.format(self.name, trial_id, epoch, buf))
if epoch == epochs - 1 and save_flag > 0:
buf = "%.4f" % (val_acc)
self.save(epoch, name='./test_model/{}_{}_ep{}_val{}_final.pth.tar'.format(self.name, trial_id, epoch, buf))
return best_acc
def validate(self, step=0):
self.student.eval()
with torch.no_grad():
correct = 0
total = 0
acc = 0
T = 4
loss_KD = 0.0
KD_loss = 0.0
loss_SL = 0.0
loss_ = 0.0
KD_loss2 = 0.0
for batch_idx1, (images, signals, labels) in enumerate(self.test_loader):
images = images.to(self.device)
signals = signals.to(self.device)
labels = labels.to(self.device)
outputs = self.student(signals)
loss_SL = nn.CrossEntropyLoss()(outputs, labels) #softmax entropy
loss_ += loss_SL* labels.size(0)
if self.have_teacher:
teacher_outputs = self.teacher(images)
teacher_outputs2 = self.teacher2(signals)
loss_KD = nn.KLDivLoss()(F.log_softmax(outputs / T, dim=1), F.softmax(teacher_outputs / T, dim=1))
loss_KD2 = nn.KLDivLoss()(F.log_softmax(outputs / T, dim=1), F.softmax(teacher_outputs2 / T, dim=1))
KD_loss += loss_KD * labels.size(0)
KD_loss2 += loss_KD2 * labels.size(0)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = 100 * correct / total
buf = "%.4f" % (acc)
if self.have_teacher:
KD_L = KD_loss / total
KD_L2 = KD_loss2 / total
SF_L = loss_ / total
print(f'( "metric": "{self.name}_val_accuracy", "value": {buf}, "SF_L": {SF_L:.9f}, "KD_L": {KD_L:.9f}, "KD_L2": {KD_L2:.9f} )')
else:
SF_L = loss_ / total
print(f'( "metric": "{self.name}_val_accuracy", "value": {buf}, "SF_L": {SF_L:.9f})')
return acc
def save(self, epoch, name=None):
trial_id = self.config['trial_id']
if name is None:
torch.save({
'epoch': epoch,
'model_state_dict': self.student.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
}, '{}_{}_epoch{}.pth.tar'.format(self.name, trial_id, epoch))
else:
torch.save({
'model_state_dict': self.student.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'epoch': epoch,
}, name)
def adjust_learning_rate(self, optimizer, epoch):
epochs = self.config['epochs']
models_are_plane = self.config['is_plane']
same_lr = 0
if same_lr:
lr = 0.01
else:
if epoch < int(epochs/18.0):
lr = 0.05
elif epoch < int(epochs/3.0):
lr = 0.1 * 0.1
elif epoch < int(epochs*2/3.0):
lr = 0.1 * 0.01
else:
lr = 0.1 * 0.001
# update optimizer's learning rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def adjust_learning_rate2(self, optimizer, epoch):
epochs = self.config['epochs']
models_are_plane = self.config['is_plane']
# depending on dataset
if models_are_plane:
lr = 0.01
else:
if epoch < int(epoch/2.0):
lr = 0.1
elif epoch < int(epochs*3/4.0):
lr = 0.1 * 0.1
else:
lr = 0.1 * 0.01
# update optimizer's learning rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def get_all_preds(model, loader):
all_preds = torch.tensor([])
for batch in loader:
images, labels = batch
preds = model(images)
all_preds = torch.cat(
(all_preds, preds)
,dim=0
)
return all_preds
if __name__ == "__main__":
# Parsing arguments and prepare settings for training
args = parse_arguments()
print(args)
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
trial_id = args.trial
dataset = args.dataset
if dataset == 'pamap':
num_classes = 12
test_id = args.sbj
else:
num_classes = 10
teacher_model = None
student_model = create_cnn_model(args.student, dataset, use_cuda=args.cuda, num_cls=num_classes)
if args.student_checkpoint:
print("---------- Loading Student -------")
student_model = load_checkpoint(student_model, args.student_checkpoint)
train_config = {
'epochs': args.epochs,
'learning_rate': args.learning_rate,
'momentum': args.momentum,
'weight_decay': args.weight_decay,
'device': 'cuda' if args.cuda else 'cpu',
'is_plane': not is_resnet(args.student),
'trial_id': trial_id,
}
# Train Teacher if provided a teacher, otherwise it's a normal training using only cross entropy loss
# This is for training single models(NOKD in paper) for baselines models (or training the first teacher)
if args.teacher:
teacher_model = create_cnn_model(args.teacher, dataset, use_cuda=args.cuda, num_cls=num_classes)
teacher_model2 = create_cnn_model(args.teacher2, dataset, use_cuda=args.cuda, num_cls=num_classes)
if args.teacher_checkpoint:
print("---------- Loading Teacher -------")
teacher_model = load_checkpoint(teacher_model, args.teacher_checkpoint)
teacher_model2 = load_checkpoint(teacher_model2, args.teacher_checkpoint2)
else:
print("---------- Training Teacher -------")
train_loader, test_loader = get_PAMAP2_data3(test_id=test_id, batch_size=args.batch_size)
teacher_train_config = copy.deepcopy(train_config)
teacher_name = 'teacher_{}_{}_best.pth.tar'.format(args.teacher, trial_id)
teacher_train_config['name'] = args.teacher
teacher_trainer = TrainManager(teacher_model, teacher=None, train_loader=train_loader, test_loader=test_loader, train_config=teacher_train_config)
teacher_trainer.train()
teacher_model = load_checkpoint(teacher_model, os.path.join('./', teacher_name))
# Student training
print("---------- Training Student -------")
student_train_config = copy.deepcopy(train_config)
train_loader, test_loader = get_PAMAP2_data4(test_id=test_id, batch_size=args.batch_size) #signal+image load
#train_loader2, test_loader2 = get_PAMAP2_data(test_id,SEED) #signal load
images, signals, labels = next(iter(train_loader))
print('input shape: ', signals[0].shape, labels.shape)
summary(student_model, signals[0].shape)
student_train_config['name'] = args.student
student_trainer = TrainManager(student_model, teacher=teacher_model, teacher2=teacher_model2, train_loader=train_loader, test_loader=test_loader, train_config=student_train_config)
best_student_acc = student_trainer.train()