Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

infer.clonal.models() no rows to aggregate #51

Open
Aaron-sqw opened this issue Dec 1, 2021 · 2 comments
Open

infer.clonal.models() no rows to aggregate #51

Aaron-sqw opened this issue Dec 1, 2021 · 2 comments

Comments

@Aaron-sqw
Copy link

Dear Dang,

When I run the infer.clonal.models() for parents order, I meet a problem.
I reads the old issues about this question, but the method all not worked.
===============Error:==================
Sample 1: Pre1 <-- Pre1
Sample 2: Pre2 <-- Pre2
Sample 3: Post <-- Post
Using monoclonal model
Note: all VAFs were divided by 100 to convert from percentage to proportion.
Generating non-parametric boostrap samples...
Pre1 : Enumerating clonal architectures...
Determining if cluster VAF is significantly positive...
Exluding clusters whose VAF < min.cluster.vaf=0.01
Non-positive VAF clusters: 6
Pre1 : 10 clonal architecture model(s) found

Pre2 : Enumerating clonal architectures...
Determining if cluster VAF is significantly positive...
Exluding clusters whose VAF < min.cluster.vaf=0.01
Non-positive VAF clusters: 5
Pre2 : 22 clonal architecture model(s) found

Post : Enumerating clonal architectures...
Determining if cluster VAF is significantly positive...
Exluding clusters whose VAF < min.cluster.vaf=0.01
Non-positive VAF clusters: 3,5
Post : 7 clonal architecture model(s) found

Finding consensus models across samples...
Found 4 consensus model(s)
Generating consensus clonal evolution trees across samples...
Error in aggregate.data.frame(lhs, mf[-1L], FUN = FUN, ...): no rows to aggregate
Traceback:

  1. infer.clonal.models(variants = x, cluster.col.name = "cluster",
    . vaf.col.names = vaf.col.names, sample.groups = sample.groups,
    . sample.names = NULL, cancer.initiation.model = "monoclonal",
    . subclonal.test = "bootstrap", subclonal.test.model = "non-parametric",
    . num.boots = 1000, founding.cluster = 1, cluster.center = "median",
    . ignore.clusters = NULL, clone.colors = clone.colors, min.cluster.vaf = 0.01,
    . sum.p = 0.05, alpha = 0.05)
  2. find.matched.models(vv, sample.names, sample.groups, merge.similar.samples = merge.similar.samples)
  3. merge.clone.trees(m, samples = samples, sample.groups, merge.similar.samples = merge.similar.samples)
  4. aggregate(sample.group ~ ., cgrp, paste, collapse = ",")
  5. aggregate.formula(sample.group ~ ., cgrp, paste, collapse = ",")
  6. aggregate.data.frame(lhs, mf[-1L], FUN = FUN, ...)
  7. stop("no rows to aggregate")

==============my Code==============
library(clonevol)
x=read.table("cluster2_rmNA.xls",head=T,sep="\t")
head(x)
vaf.col.names <- grep('.vaf', colnames(x), value=T)
vaf.col.names
sample.names <- gsub('.vaf', '', vaf.col.names)
sample.names
x[, sample.names] <- x[, vaf.col.names]
head(x)
x <- x[order(x$cluster),]
head(x)
sample.groups <- c('Pre1','Pre2','Post')
vaf.col.names = c('Pre1','Pre2','Post')
sample.names <- c('Pre1','Pre2','Post')
y = infer.clonal.models(variants = x,
cluster.col.name = 'cluster',
vaf.col.names = vaf.col.names,
sample.groups = sample.groups,
sample.names = NULL,
cancer.initiation.model='monoclonal',
subclonal.test = 'bootstrap',
subclonal.test.model = 'non-parametric',
num.boots = 1000,
founding.cluster = 1,
cluster.center = 'median',
ignore.clusters = NULL,
clone.colors = clone.colors,
min.cluster.vaf = 0.01,
sum.p = 0.05,
alpha = 0.05)

===============My data is ===================
cluster gene Pre1.vaf Pre2.vaf Post.vaf
2 gene2 34.58 22.54 12.83
2 gene3 41.73 26.79 21.9
2 gene4 37.86 23.11 12.95
2 gene5 34.81 18.35 19.65
3 gene6 37.85 8.27 0
3 gene7 34.65 14.29 0
2 gene8 44.05 18.94 24.19
6 gene9 0 9.92 7.66
6 gene10 0 10.24 2.31
3 gene11 35.05 6.97 0
3 gene12 34.39 7.72 0
2 gene13 36.14 25.83 18.31
4 gene14 22.07 20.34 21.56
6 gene15 0 14.92 24.37
3 gene16 26.83 5.36 0
6 gene17 0 17.16 16.67
2 gene18 33.33 28.08 18.75
5 gene19 8.33 0 0
6 gene20 0 4.49 3.83
2 gene21 30.65 25.89 19.33
6 gene22 0 7.51 0.6
2 gene23 34.1 29.75 28.25
2 gene24 35.44 28.1 30.36
2 gene25 35.89 27.5 36.92
6 gene26 0 8.25 0
1 gene27 46.03 33.33 24.39
2 gene28 40.8 30.04 28.43
6 gene29 0 8.11 12.24
3 gene30 41 6.97 0
3 gene31 33.33 4.68 0
4 gene32 15.29 21.09 11.89
1 gene33 70.76 45.48 21.32
1 gene34 85.47 71.12 61.57
6 gene35 0 9.49 1.89
2 gene36 35.43 27.6 16.94
6 gene37 0 13.77 0
6 gene38 0 9 0
3 gene39 34.5 8.44 0
2 gene40 34.17 17.65 20.97
3 gene41 33.82 10.22 0
3 gene42 34.69 8.5 1.16
2 gene43 39.9 29.17 24.16
2 gene44 33.98 23.36 22.12
6 gene45 0 11.54 0
4 gene46 15.76 18.67 15.79
2 gene47 23.78 26.29 22
1 gene48 46.12 35.94 28.08
3 gene49 19.26 6.4 0
4 gene50 16.32 10.42 12.12
3 gene51 34.12 5.95 0
6 gene52 0 10.93 2.5
3 gene53 36.43 6.37 0
2 gene54 32.97 22.14 20.41
6 gene55 0.31 7.48 14.06
2 gene56 34.72 32.35 17.65
2 gene57 36.22 19.23 16.87
3 gene58 41.3 10.34 0
5 gene59 14.89 0 0
2 gene60 35.61 26.32 24.19
1 gene61 41.29 32.45 45.61
6 gene62 0 0 14.29
2 gene63 42.17 29.88 14.02
3 gene64 33.63 8.21 0
2 gene65 36.54 25.36 16.99
2 gene66 35.2 20.47 15.2
3 gene67 38.18 7.99 1.6
3 gene68 34.43 9.51 0
2 gene69 34.29 24.83 20.21
3 gene70 32.56 5.43 0
3 gene71 37.25 8.12 0.49
2 gene72 43.55 25 31.54
2 gene73 29.86 23.54 26.18
2 gene74 32.31 24.28 9.05
2 gene75 36.61 27.3 27.32
2 gene76 31.39 27.27 29.72
1 gene77 51.15 37.96 39.85
6 gene78 0 16.87 0
6 gene79 0 7.51 0
3 gene80 30.71 11.7 0
2 gene81 36.31 18.33 19.51
4 gene82 9.04 10.98 12.76
2 gene83 33.54 32.58 27.11
2 gene84 36.23 21.19 20.31
2 gene85 30.81 18.72 22.73
2 gene86 32.11 23.4 36.8
2 gene87 32.89 28.57 29.09
3 gene88 44.35 9.55 0.72
3 gene89 36.88 8.16 0
3 gene90 38.64 7.69 0
1 gene91 45.83 26.32 46.42
2 gene92 33.79 24.89 13.97
2 gene93 36.19 21.76 32.14
2 gene94 33.48 26.43 24.5
2 gene95 34.8 26.18 20.66
2 gene96 31.69 25 21.38
2 gene97 36.59 29.48 23.19
2 gene98 38.48 33.42 22.55
3 gene99 32.67 11.76 0
2 gene100 29.1 27.65 10.95
2 gene101 40.4 24.88 29.94
2 gene102 35.43 24.12 27.78
2 gene103 40.34 31.47 33.82
3 gene104 43.43 3.03 0.27
6 gene105 0 7.45 3.17
2 gene106 36.24 30.67 15.53
2 gene107 43.43 25.7 14.38
2 gene108 38.15 26.7 15.89
2 gene109 37.05 30.28 29.21
2 gene110 40.19 25.24 17.2
2 gene111 35.35 23.1 19.02
6 gene112 0 7.23 23.08
2 gene113 32.42 22.02 18.64
2 gene114 28.33 24.4 20.98
2 gene115 34.13 18.9 18.15
3 gene116 39.09 8.56 0
2 gene117 39.01 25.07 19.05
3 gene118 40.4 7.55 0.4
2 gene119 34.57 23.68 38.15
6 gene120 0.49 12.32 4.2
2 gene121 30.67 24.16 13.27
2 gene122 32.26 24.66 25.27
2 gene123 34.65 23.43 14.09
6 gene124 0 11.6 8.06
2 gene125 31.78 20 19.87
2 gene126 30.08 29.67 25.17
2 gene127 41.04 22.64 16.44
2 gene128 38.18 25.4 15.96
5 gene129 14.46 0 0.36
2 gene130 33.68 26.42 13.47
2 gene131 38.17 33.26 26.13
2 gene132 33.33 21.47 22.73
2 gene133 44.14 27.06 25.71
2 gene134 32.74 19.82 24.82
2 gene135 35.04 25 20.85
2 gene136 34.3 25.29 20.42
2 gene137 39.11 25.14 18.69
2 gene138 32.62 24 12.9
6 gene139 0 6.22 13.62
6 gene140 0 0 11.59
2 gene141 32.83 22.29 12.14
3 gene142 34.19 5.92 0
2 gene143 32.2 28.49 21.1
5 gene144 11.14 0 0
3 gene145 29.3 6.63 0
5 gene146 12.46 0 0
2 gene147 30.91 28.74 19.11
6 gene148 0 8.15 2.33
2 gene149 30.63 29 17.8
2 gene150 32.9 28 25.74
2 gene151 30.66 36.36 28.8
2 gene152 35.71 19.88 23.45
2 gene153 32.89 27.85 20.28
3 gene154 29.32 9.33 0
2 gene155 35.18 23.47 26.24
2 gene156 34.1 27.74 32.72
1 gene157 54.76 33.7 25.95
1 gene158 57.6 46.41 27.19
1 gene159 59.24 29.26 33.13
1 gene160 35.92 40.91 24.37
3 gene161 59.69 12.26 0
2 gene162 37.06 26.97 20.74
2 gene163 30.32 26.44 27.23
3 gene164 38.52 6.48 0
2 gene165 37.62 31.05 26.42
2 gene166 30.37 26.27 15.71
1 gene167 66.06 34.07 24.77
1 gene168 53.57 42.53 23.68
4 gene169 22.12 13.22 20.16
2 gene170 27.64 20.14 23.89
2 gene171 27.52 25.11 23.6
2 gene172 37.46 25.76 12.07
3 gene173 32.23 8.13 0.29
2 gene174 35.44 23.14 15
3 gene175 38.57 8.92 3.95
6 gene176 0 6.28 0
2 gene177 33.97 23.34 16.22
2 gene178 36.44 26.36 19.25
3 gene179 35 9.45 0
2 gene180 37.5 26.05 24.92
2 gene181 32.18 25.3 7.83
4 gene182 13.16 14.22 22.57
2 gene183 33.2 27.81 23.36
6 gene184 0 8.38 19.26
2 gene185 31.82 25.53 21.7
2 gene186 36.63 30.74 35.42
2 gene187 35.03 21.61 12.25
3 gene188 31.74 15.85 0
6 gene189 0 9.17 0
6 gene190 0 11.41 0
2 gene191 38.49 32.36 28
2 gene192 34.01 30.83 32.88
3 gene193 36.67 5.45 0
2 gene194 29.19 18.59 6.09

Thanks,
Qiwei

@monkeyBai96
Copy link

How do you solve the problem?

@ChiaraCaprioli
Copy link

I encountered the same error and solved it by naming sample.groups, as also explained in the vignette

names(sample.groups) <- vaf.col.names

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants