-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
931 lines (780 loc) · 33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 25 13:13:47 2021
@author: Chang.Liu
"""
# =============================================================================
# Import packages
# =============================================================================
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime
from typing import Optional, List, Tuple, Dict
import sys
sys.path.insert(0, r'C:\Users\Chang.Liu\Documents\dev\Data_Importer')
from bg_data_importer import DataImporter
# =============================================================================
# Variables
# =============================================================================
# Queries
query_bmc_monthly = """SELECT * FROM development.dbo.bmc_monthly
WHERE bm_id IN ('sp500', 'sptsx')"""
query_univsnapshot = """SELECT *
FROM fstest.dbo.univsnapshot
WHERE univ_id IN ('CANADA', 'US')"""
query_portholding = """SELECT * FROM development.dbo.portholding
WHERE company NOT IN ('Placeholder', 'Cash-INVEST-USD', 'Cash-INVEST-CAD')"""
query_div_ltm = """SELECT div.fsym_id, exdate, date, div_type, div_freq
FROM fstest.dbo.bg_div AS div
LEFT JOIN fstest.dbo.bg_div_ltm AS ltm
ON div.exdate = ltm.date
AND div.fsym_id = ltm.fsym_id
WHERE div_type ='regular'
AND dummy_payment = 0
"""
query_portreturn = """SELECT *
FROM development.dbo.PortReturn"""
query_bmprices = """SELECT *
FROM development.dbo.BMPrice"""
query_adjpricet = """SELECT [fsym_id]
FROM [FSTest].[dbo].[AdjustedPriceTickers]"""
query_holiday = """SELECT [fref_exchange_code]
,[holiday_date]
,[holiday_name]
FROM [FSTest].[ref_v2].[ref_calendar_holidays]
WHERE fref_exchange_code IN ('NYS', 'TSE')"""
# Messages
reason_dict = {'not_updated_daily': 'Not Updated Daily',
'not_updated_monthly': 'Not Updated Monthly',
'prob_row': 'Problematic Rows',
'large_port_diff': 'Large monthly portfolio count differences',
}
msg = {'success': 'No problematic rows found.',
'error_prob_rows': 'Found problematic rows.',
'multiselect_table': 'Select a table to view details.',
'update_lag': 'There is a 1 day data update lag for some tables.',
'year_selection': 'Select a year'
}
# Widget Labels
header = {
'holiday': 'Holidays:',
'other_view': 'Other views:',
'sum_view': 'Summary'
}
checkbox_label = {
'date_view': 'View by Date',
'us_holiday': 'Show US Holiday',
'cad_holiday': 'Show Canadian Holiday',
'color_ref': 'Show color references',
}
table_label = {
'portholding': 'Portfolio Holding',
'portreturn': 'Portfolio Return',
'bmprices': 'BM Prices',
'bmc_monthly': 'BMC Monthly',
'univsnapshot': 'Universe Snapshot',
'div_ltm': 'Div LTM',
'holiday': 'Holiday',
'today': 'Today'
}
# Setup
lst_tables = [table_label['bmc_monthly'],
table_label['portholding'],
table_label['portreturn'],
table_label['bmprices'],
table_label['univsnapshot'],
table_label['div_ltm']]
lst_tables_colors = [table_label['bmprices'],
table_label['portreturn'],
table_label['portholding'],
table_label['portholding'],
table_label['bmc_monthly'],
table_label['bmc_monthly'],
table_label['univsnapshot'],
table_label['univsnapshot'],
table_label['univsnapshot'],
table_label['div_ltm'],
table_label['div_ltm'],
table_label['holiday'],
table_label['today']]
color_df = pd.DataFrame({'Table': lst_tables_colors,
'Reason': [reason_dict['not_updated_daily'],
reason_dict['not_updated_daily'],
reason_dict['prob_row'],
reason_dict['not_updated_daily'],
reason_dict['prob_row'],
reason_dict['not_updated_monthly'],
reason_dict['prob_row'],
reason_dict['large_port_diff'],
reason_dict['not_updated_monthly'],
reason_dict['prob_row'],
reason_dict['not_updated_monthly'],
table_label['holiday'],
table_label['today']]})
# Colors for highlights and reference table
colors = {'bmprices': 'background-color: orange',
'portreturn': 'background-color: yellow',
'bmc_monthly': 'background-color: purple',
'bmc_monthly_is_monthly': 'background-color: blueviolet',
'portholding': 'background-color: green',
'portholding_is_daily': 'background-color: lightgreen',
'univsnapshot': 'background-color: pink',
'univsnapshot_is_monthly': 'background-color: red',
'univ_notin_id': 'background-color: darkred',
'div_ltm': 'background-color: blue',
'div_ltm_is_monthly': 'background-color: lightblue',
'holiday': 'background-color: darkgrey',
'today': 'background-color: aquamarine',
'background': 'background-color: white'
}
# =============================================================================
# Functions - Import data
# =============================================================================
# Perform query and fetch data from SQL server.
@st.cache(allow_output_mutation=True, ttl=60*60)
def load_data(query: str) -> pd.DataFrame:
"""
Load data from SQL database based on query and returns a dataframe
Parameters
----------
query : str
SQL query.
Returns
-------
pd.DataFrame
A dataframe of data loaded from MS SQL DB.
"""
data = DataImporter(verbose=False)
return data.load_data(query)
# =============================================================================
# Functions - Check Data Quality
# =============================================================================
@st.cache
def find_univsnapshot(df: pd.DataFrame) -> pd.DataFrame:
"""
Filters dataframe for rows with monthly company count larger than tolerance
Parameters
----------
df : pd.DataFrame
Dataframe of data that we need to check, loaded from DB
Returns
-------
pd.DataFrame
Rows with monthly company count larger than tolerance
"""
tol = 300
df = df.copy()
df = df.groupby('rdate')['univ_id'].value_counts()
df = df.reset_index(name='monthly_company_count')
st.write(df['monthly_company_count'].dtype)
st.write( df.groupby('monthly_company_count')['univ_id'].dtype)
df['diff_monthly'] = df.groupby('monthly_company_count')['univ_id'].diff()
return df[df['diff_monthly'] > tol]
@st.cache
def check_daily(input_year: int, holiday_date: pd.Series,
df_date: pd.Series) -> pd.DataFrame:
"""
Returns business dates not included in input df
Parameters
----------
input_year : int
The year that we need to check (that the user selected).
holiday_date : pd.Series
Holiday dates.
df_date : pd.Series
Dataframe of data that we need to check, loaded from DB
Returns
-------
res : pd.DataFrame
Business dates not present in input df that we need to check.
"""
sdate = datetime(input_year, 1, 1)
edate = datetime(input_year, 12, 31)
dates = pd.date_range(start=sdate, end=edate)
weekday_dates = dates[dates.weekday < 5]
business_dates = weekday_dates[~weekday_dates.isin(holiday_date)]
res = pd.DataFrame(
{'rdate': business_dates[~business_dates.isin(df_date)].date})
return res
@st.cache
def check_monthly(input_year: int,
df_date: pd.Series) -> pd.DataFrame:
"""
Returns dates not included in input Series
Parameters
----------
input_year : int
The year that we need to check.
df_date : pd.Series
Dataframe of data that we need to check, loaded from DB
Returns
-------
res : pd.DataFrame
Dates in month that are not present in input_df.
"""
sdate = datetime(input_year, 1, 1)
edate = datetime(input_year, 12, 31)
monthly_dates_uniq = pd.date_range(start=sdate, end=edate, freq='M')
monthly_dates = pd.date_range(start=sdate, end=edate)
monthly_dates_uniq = pd.Series(monthly_dates_uniq)
monthly_dates = pd.Series(monthly_dates)
df_date = df_date.copy()
monthly_dates_not_in_res = pd.Series(monthly_dates_uniq[
~monthly_dates_uniq.dt.month.isin(df_date['rdate'].dt.month)])
res = monthly_dates[monthly_dates.dt.month.isin(
monthly_dates_not_in_res.dt.month)]
res = res.dt.date.to_frame('rdate')
return res
def get_result_tables(selected: List[str], input_year: int,
data: Dict[str, pd.DataFrame]) -> Dict[str, pd.DataFrame]:
"""
Find errors of every table based on the input year and input table
Parameters
----------
selected : List[str]
Tables selected in the Streamlit multiselect widget.
input_year : str
Year we need to check.
data : Dict[str, pd.DataFrame]
Data loaded from DB.
Returns
-------
result_dict : Dict[str, pd.DataFrame]
Error entries in data after performing the checks.
"""
adjpricet_fsym_id = data['adjpricet']['fsym_id'].unique()
data = {key: data[key] for key in data.keys() if (key != 'holiday') and (key != 'adjpricet')}
data = {tbl: data[tbl][data[tbl]['rdate'].dt.year == input_year] for tbl in data.keys()}
result_dict = {tbl: pd.DataFrame([], columns=data[tbl].columns) for tbl in data.keys()}
tables_is_null = ['portholding', 'bmc_monthly', 'div_ltm']
columns_is_null = ['secid', 'fsym_id', 'rdate']
for tbl, col in zip(tables_is_null, columns_is_null):
if table_label[tbl] in selected:
result_dict.update({tbl: data[tbl][data[tbl][col].isnull()]})
else:
result_dict.update({tbl: pd.DataFrame([], columns=data[tbl].columns)})
tables_daily = ['bmprices', 'portreturn']
for tbl in tables_daily:
if table_label[tbl] in selected:
result_dict.update({tbl: check_daily(input_year, holiday_date,
data[tbl]['rdate'])})
else:
result_dict.update({tbl: pd.DataFrame([], columns=['rdate'])})
result_dict.update({'portholding_is_daily': check_daily(input_year, holiday_date,
data['portholding']['rdate'])})
tables_monthly = ['bmc_monthly', 'univsnapshot', 'div_ltm']
for tbl in tables_monthly:
if table_label[tbl] in selected:
result_dict.update({f'{tbl}_is_monthly':
check_monthly(input_year, data[tbl])})
else:
result_dict.update({f'{tbl}_is_monthly': pd.DataFrame([], columns=data[tbl].columns)})
# Filters dataframe for rows not also in Adj Price table
# res_univ_notin_id = res_univsnapshot[
# ~res_univsnapshot['fsym_id'].isin(adjpricet_fsym_id)]
# res_univsnapshot = find_univsnapshot(res_univsnapshot)
result_dict.update({'univsnapshot': find_univsnapshot(data['univsnapshot'])})
result_dict.update({'univ_notin_id': data['univsnapshot'][
~data['univsnapshot']['fsym_id'].isin(adjpricet_fsym_id)]})
st.write(result_dict.values())
# if table_label['portholding'] in selected:
# portholding = data['portholding']
# res_portholding = portholding[portholding['rdate'].dt.year == input_year]
# res_portholding = res_portholding.copy()
# res_portholding['rdate'] = res_portholding['rdate'].dt.date
# res_portholding_is_daily = check_daily(input_year, holiday_date,
# res_portholding['rdate'])
# res_portholding = res_portholding[res_portholding['secid'].isnull()]
# else:
# res_portholding = pd.DataFrame([], columns=data['portholding'].columns)
# res_portholding_is_daily = pd.DataFrame([], columns=['rdate'])
# if table_label['bmprices'] in selected:
# bmprices = data['bmprices']
# res_bmprices = bmprices[bmprices['rdate'].dt.year == input_year]
# res_bmprice = res_bmprices.copy()
# res_bmprice['rdate'] = res_bmprices['rdate'].dt.date
# res_bmprices = check_daily(input_year, holiday_date,
# res_bmprices['rdate'])
# else:
# res_bmprices = pd.DataFrame([], columns=['rdate'])
# if table_label['portreturn'] in selected:
# portreturn = data['portreturn']
# res_portreturn = portreturn[portreturn['rdate'].dt.year == input_year]
# res_portreturn = res_portreturn.copy()
# res_portreturn['rdate'] = res_portreturn['rdate'].dt.date
# res_portreturn = check_daily(input_year, holiday_date,
# res_portreturn['rdate'])
# else:
# res_portreturn = pd.DataFrame([], columns=['rdate'])
# if table_label['bmc_monthly'] in selected:
# bmc_monthly = data['bmc_monthly']
# res_bmc_monthly = bmc_monthly[bmc_monthly['rdate'].dt.year == input_year]
# res_bmc_monthly_is_monthly = check_monthly(input_year, res_bmc_monthly)
# res_bmc_monthly = res_bmc_monthly[res_bmc_monthly['fsym_id'].isnull()]
# else:
# res_bmc_monthly = pd.DataFrame([], columns=data['bmc_monthly'].columns)
# res_bmc_monthly_is_monthly = pd.DataFrame([], columns=['rdate'])
# if table_label['univsnapshot'] in selected:
# univsnapshot = data['univsnapshot']
# res_univsnapshot = univsnapshot[univsnapshot['rdate'].dt.year == input_year]
# res_univsnapshot_is_monthly = check_monthly(
# input_year, res_univsnapshot)
# # Filters dataframe for rows not also in Adj Price table
# adjpricet_fsym_id = data['adjpricet']['fsym_id'].unique()
# res_univ_notin_id = res_univsnapshot[
# ~res_univsnapshot['fsym_id'].isin(adjpricet_fsym_id)]
# res_univsnapshot = find_univsnapshot(res_univsnapshot)
# else:
# res_univsnapshot = pd.DataFrame(
# [], columns=data['univsnapshot'].columns)
# res_univsnapshot_is_monthly = pd.DataFrame([], columns=['rdate'])
# res_univ_notin_id = pd.DataFrame(
# [], columns=data['univsnapshot'].columns)
# if table_label['div_ltm'] in selected:
# res_div_ltm = data['div_ltm'][data['div_ltm']
# ['rdate'].dt.year == input_year]
# res_div_ltm_is_monthly = check_monthly(input_year, res_div_ltm)
# res_div_ltm = res_div_ltm[res_div_ltm['rdate'].isnull()]
# else:
# res_div_ltm = pd.DataFrame([], columns=data['div_ltm'].columns)
# res_div_ltm_is_monthly = pd.DataFrame([], columns=['rdate'])
# result_dict = {'portholding': res_portholding,
# 'portholding_is_daily': res_portholding_is_daily,
# 'bmprices': res_bmprices,
# 'portreturn': res_portreturn,
# 'bmc_monthly': res_bmc_monthly,
# 'bmc_monthly_is_monthly': res_bmc_monthly_is_monthly,
# 'univsnapshot': res_univsnapshot,
# 'univsnapshot_is_monthly': res_univsnapshot_is_monthly,
# 'univ_notin_id': res_univ_notin_id,
# 'div_ltm': res_div_ltm,
# 'div_ltm_is_monthly': res_div_ltm_is_monthly}
return result_dict
def get_result_daily(input_date: datetime.date,
result_dict: Dict[str, pd.DataFrame]) -> Dict[str, pd.DataFrame]:
"""
Get problematic entries for each table for a given date.
Parameters
----------
input_date : datetime.date
Date that we need to check.
result_dict : Dict[str, pd.DataFrame]
Dictionary that contains problematic entries for each table
Returns
-------
result_dict_daily : Dict[str, pd.DataFrame]
Dictionary of problematic entries for each table for a given date.
"""
tables = ['bmc_monthly', 'bmc_monthly_is_monthly', 'portholding',
'univsnapshot', 'univsnapshot_is_monthly', 'univ_notin_id',
'div_ltm', 'div_ltm_is_monthly']
result_dict_daily = {tbl: result_dict[tbl][
(pd.DatetimeIndex(
result_dict[tbl]['rdate']).year == input_date.year) &
(pd.DatetimeIndex(
result_dict[tbl]['rdate']).month == input_date.month)]
for tbl in tables}
tables_daily = ['bmprices', 'portreturn', 'portholding_is_daily']
result_dict_daily_2 = {
tbl: result_dict[tbl][result_dict[tbl]['rdate'] == input_date]
for tbl in tables_daily}
result_dict_daily.update(result_dict_daily_2)
return result_dict_daily
@st.cache
def get_holiday(input_year: int, holiday: pd.Series,
is_us_holiday: bool,
is_cad_holiday: bool) -> Tuple[pd.DataFrame, pd.Series]:
"""
Return holidays in the given year based on which holiday calendar is selected
Parameters
----------
input_year : int
The year that we need to check.
holiday : pd.Series
The holidays loaded from SQL.
is_us_holiday : bool
If we need to check for US holidays.
is_cad_holiday : bool
If we need to check for Canadian holidays.
Returns
-------
holiday_date : pd.Series
Series of holiday dates for the given year for the given country.
"""
holiday_df = holiday[holiday['holiday_date'].dt.year == input_year]
if not is_cad_holiday and not is_us_holiday:
holiday_date = pd.Series([])
return holiday_date
if is_us_holiday and not is_cad_holiday:
holiday_df = holiday_df[holiday_df['fref_exchange_code'] == 'NYS']
if is_cad_holiday and not is_us_holiday:
holiday_df = holiday_df[holiday_df['fref_exchange_code'] == 'TSE']
holiday_date = holiday_df['holiday_date'].dt.date
return holiday_date
def get_result_sum_df(input_year: str,
holiday_date: pd.Series,
result_dict: Dict[str, pd.DataFrame]) -> pd.DataFrame:
"""
Get a summary df to show result in calendar view
Parameters
----------
input_year : str
The year that the user selected.
holiday_date : pd.Series
Series contains the holidays this year.
result_dict : Dict[str, pd.DataFrame]
Dictionary that contains problematic entries for each table
Returns
-------
res_table_df : pd.DataFrame
Dataframe that contains the error code for each table and date in the
given year.
"""
sdate = datetime(input_year, 1, 1)
edate = datetime(input_year, 12, 31)
dates = pd.date_range(start=sdate, end=edate)
res_table_df = pd.DataFrame([], index=dates.date)
st.write(result_dict)
for tbl in result_dict.keys():
res_table_df[tbl] = dates.isin(result_dict[tbl]['rdate'])
res_table_df['holiday'] = dates.isin(holiday_date)
return res_table_df
# =============================================================================
# Functions - Show Calendar for Summary View
# =============================================================================
# Output week of the month based on the date
def week_of_month(dt: datetime) -> int:
"""
Returns the week of the month for the specified date.
Parameters
----------
dt : datetime
A date.
Returns
-------
int
The week of the month for the given date.
"""
first_day = dt.replace(day=1)
dom = dt.day
adjusted_dom = dom + first_day.weekday()
return int(np.ceil(adjusted_dom/7.0))
# Return a dataframe of month, weeks, days in the given year
def year_cal(input_year: int) -> pd.DataFrame:
"""
Return a dataframe of yearly calendar.
Parameters
----------
input_year : int
The year that the user selected to view.
Returns
-------
None.
"""
sdate = datetime(input_year, 1, 1)
edate = datetime(input_year, 12, 31)
dates = pd.date_range(start=sdate, end=edate)
df = pd.DataFrame({'month': pd.DatetimeIndex(dates).month_name(),
'weekday': pd.DatetimeIndex(dates).weekday,
'day': pd.DatetimeIndex(dates).day.astype(int),
'date': dates})
week = df['date'].apply(week_of_month)
df.insert(loc=1, column='week', value=week)
return df
def show_months(input_year: str, res_table_df: pd.DataFrame, m1: str,
m2: str, m3: str) -> None:
"""
Show monthly calendars for three months in a row
Parameters
----------
input_year : str
The year that the user selected to view.
res_table_df : pd.DataFrame
Dataframe contains the error code for each table.
m1 : str
First month we wanted to display.
m2 : str
Second month we wanted to display.
m3 : str
Third month we wanted to display.
Returns
-------
None
"""
col1, col2, col3 = st.columns(3)
year_calendar = year_cal(input_year)
with col1:
st.header(m1)
show_month_df(input_year, year_calendar, res_table_df, m1)
with col2:
st.header(m2)
show_month_df(input_year, year_calendar, res_table_df, m2)
with col3:
st.header(m3)
show_month_df(input_year, year_calendar, res_table_df, m3)
def show_month_df(input_year: str, df: pd.DataFrame,
res_table_df: pd.DataFrame, month: str) -> None:
"""
Show a dataframe with bad dates highlighted for the given month
Parameters
----------
input_year : str
The year that the user selected to view.
df : pd.DataFrame
The dataframe of the given year.
res_table_df : pd.DataFrame
Dataframe contains the error code for each table.
month : str
The month we want to display.
Returns
-------
None
"""
df = df[df['month'] == month]
df = df.pivot(index='week', columns='weekday', values='day')
dayOfWeek = {0: 'M', 1: 'T', 2: 'W', 3: 'Th', 4: 'F', 5: 'S', 6: 'Su'}
df.columns = [df.columns.map(dayOfWeek)]
df = df.fillna("")
df = df.drop(['S', 'Su'], axis=1, level=0)
today = datetime.today()
months = dict(January=1, February=2, March=3, April=4, May=5,
June=6, July=7, August=8, September=9, October=10,
November=11, December=12)
isToday = ((month == today.strftime("%B")) and input_year == today.year)
isMonthLaterThanToday = months[month] > today.month
res_table_df = res_table_df[pd.DatetimeIndex(res_table_df.index)
.month_name() == month]
res_table_df.index = pd.DatetimeIndex(res_table_df.index).day
st.write(res_table_df)
st.dataframe(df.style.apply(highlight_bad_day,
args=[isToday, isMonthLaterThanToday,
res_table_df], axis=1).set_precision(0))
def highlight_bad_day(days: pd.Series, isToday: bool, isMonthLaterThanToday: bool,
res_df: pd.DataFrame) -> List[str]:
"""
Helper function to highlight dates with bad data quality in the calendar df
Parameters
----------
days : pd.Series
The days in a week.
isToday : bool
Whether today is in the month that this function is highlighting.
isMonthLaterThanToday : bool
Whether the month that this function is highlighting is later than today.
res_df : pd.DataFrame
Dataframe contains the error code for each table.
Returns
-------
List[str]
List of colors to color a week in the monthly dataframe.
"""
if isToday:
today_day = datetime.today().date().day
else:
today_day = None
res_colors = []
for day in days:
if day != "":
if isMonthLaterThanToday:
res_colors.append(colors['background'])
elif today_day is None or int(day) <= today_day:
if res_df.at[day, 'holiday']:
res_colors.append(colors['holiday'])
elif day == today_day:
res_colors.append(colors['today'])
elif res_df.at[day, 'bmprices']:
res_colors.append(colors['bmprices'])
elif res_df.at[day, 'portreturn']:
res_colors.append(colors['portreturn'])
elif res_df.at[day, 'portholding_is_daily']:
res_colors.append(colors['portholding_is_daily'])
elif res_df.at[day, 'bmc_monthly']:
res_colors.append(colors['bmc_monthly'])
elif res_df.at[day, 'portholding']:
res_colors.append(colors['portholding'])
elif res_df.at[day, 'univsnapshot']:
res_colors.append(colors['univsnapshot'])
elif res_df.at[day, 'div_ltm']:
res_colors.append(colors['div_ltm'])
elif res_df.at[day, 'bmc_monthly_is_monthly']:
res_colors.append(colors['bmc_monthly_is_monthly'])
elif res_df.at[day, 'univsnapshot_is_monthly']:
res_colors.append(colors['univsnapshot_is_monthly'])
elif res_df.at[day, 'div_ltm_is_monthly']:
res_colors.append(colors['div_ltm_is_monthly'])
elif res_df.at[day, 'univ_notin_id']:
res_colors.append(colors['univ_notin_id'])
else:
res_colors.append(colors['background'])
else:
res_colors.append(colors['background'])
else:
res_colors.append(colors['background'])
return res_colors
def highlight_color(row: pd.Series) -> List[str]:
"""
Highlight color reference dataframe in different color
Parameters
----------
row : pd.Series
A row in the color reference dataframe.
Returns
-------
List[str]
List of colors for the current row.
"""
table = row.Table
reason = row.Reason
if table == table_label['bmprices']:
return 2 * [colors['bmprices']]
if table == table_label['portreturn']:
return 2 * [colors['portreturn']]
if table == table_label['portholding']:
if reason == reason_dict['not_updated_daily']:
return 2 * [colors['portholding_is_daily']]
if reason == reason_dict['prob_row']:
return 2 * [colors['portholding']]
if table == table_label['bmc_monthly']:
if reason == reason_dict['not_updated_monthly']:
return 2 * [colors['bmc_monthly_is_monthly']]
if reason == reason_dict['prob_row']:
return 2 * [colors['bmc_monthly']]
if table == table_label['univsnapshot']:
if reason == reason_dict['not_updated_monthly']:
return 2 * [colors['univsnapshot_is_monthly']]
if reason == reason_dict['large_port_diff']:
return 2 * [colors['univ_notin_id']]
if reason == reason_dict['prob_row']:
return 2 * [colors['univsnapshot']]
if table == table_label['div_ltm']:
if reason == reason_dict['not_updated_monthly']:
return 2 * [colors['div_ltm_is_monthly']]
if reason == reason_dict['prob_row']:
return 2 * [colors['div_ltm']]
if table == table_label['holiday']:
return 2 * [colors['holiday']]
if table == table_label['today']:
return 2 * [colors['today']]
# =============================================================================
# Functions - Show Result for Daily View
# =============================================================================
def show_res_df(header: str, res_daily_df: pd.DataFrame,
res_df: Optional[pd.DataFrame] = None,
res_df_2: Optional[pd.DataFrame] = None) -> None:
"""
Dispaly results for daily view based on items each table is checking
Parameters
----------
header : str
The header displayed on the dashboard.
res_daily_df : pd.DataFrame
Problematic entries of a table for not updated daily or monthly.
res_df : Optional[pd.DataFrame], optional
Problematic entries of a table for another reason.
res_df_2 : Optional[pd.DataFrame], optional
Problematic entries of a table for the third reason, if needed.
Returns
-------
None
"""
st.subheader(header)
error_flag = False
if res_daily_df is not None and not res_daily_df.empty:
st.error(f'No data found on {str(input_date)}')
return
for tbl in [res_df, res_df_2]:
if (tbl is not None) and not tbl.empty:
st.error(msg['error_prob_rows'])
st.write(tbl)
error_flag = True
if not error_flag:
st.success(msg['success'])
def show_res_daily_view(selected: List[str],
result_dict_daily: Dict['str', pd.DataFrame]) -> None:
"""
Display result for Daily View
Parameters
----------
selected : List[str]
Selected tables by the user.
result_dict_daily : Dict['str', pd.DataFrame]
Dictionary storing problematic entries for a given date.
Returns
-------
None
"""
if table_label['bmprices'] in selected:
show_res_df(table_label['bmprices'],
result_dict_daily['bmprices'])
if table_label['portreturn'] in selected:
show_res_df(table_label['portreturn'],
result_dict_daily['portreturn'])
if table_label['portholding'] in selected:
show_res_df(table_label['portholding'],
result_dict_daily['portholding_is_daily'],
result_dict_daily['portholding'])
if table_label['bmc_monthly'] in selected:
show_res_df(table_label['bmc_monthly'],
result_dict_daily['bmc_monthly_is_monthly'],
result_dict_daily['bmc_monthly'])
if table_label['univsnapshot'] in selected:
show_res_df(table_label['univsnapshot'],
result_dict_daily['univsnapshot_is_monthly'],
result_dict_daily['univ_notin_id'],
result_dict_daily['univsnapshot'])
if table_label['div_ltm'] in selected:
show_res_df(table_label['div_ltm'],
result_dict_daily['div_ltm_is_monthly'],
result_dict_daily['div_ltm'])
# =============================================================================
# Code
# =============================================================================
# Set page layout
st.set_page_config(layout="wide")
st.title('Data Quality Checker')
# Load data
data = {'portholding': load_data(query_portholding),
'bmprices': load_data(query_bmprices),
'portreturn': load_data(query_portreturn),
'bmc_monthly': load_data(query_bmc_monthly),
'div_ltm': load_data(query_div_ltm),
'univsnapshot': load_data(query_univsnapshot),
'adjpricet': load_data(query_adjpricet),
'holiday': load_data(query_holiday)}
data['div_ltm'].columns = ['rdate' if x == 'date' else x
for x in data['div_ltm'].columns]
# Side bar
st.sidebar.subheader(header['other_view'])
date_view = st.sidebar.checkbox(checkbox_label['date_view'])
st.sidebar.subheader(header['sum_view'])
is_us_holiday = st.sidebar.checkbox(checkbox_label['us_holiday'], value=True)
is_cad_holiday = st.sidebar.checkbox(checkbox_label['cad_holiday'])
# Sum view
st.header(header['sum_view'])
# '%d' here refers to C-style integer format, not date format.
input_year = st.number_input(
msg['year_selection'], min_value=1990, max_value=datetime.now().year,
value=datetime.now().year, format='%d')
holiday_date = get_holiday(input_year, data['holiday'],
is_us_holiday, is_cad_holiday)
selected = st.multiselect(msg['multiselect_table'],
lst_tables, [table_label['portholding']])
show_table_color_ref = st.checkbox(checkbox_label['color_ref'])
if show_table_color_ref:
st.dataframe(color_df.style.apply(highlight_color, axis=1))
st.info(msg['update_lag'])
result_dict = get_result_tables(selected, input_year, data)
res_table_df = get_result_sum_df(input_year, holiday_date, result_dict)
show_months(input_year, res_table_df, 'January', 'February', 'March')
show_months(input_year, res_table_df, 'April', 'May', 'June')
show_months(input_year, res_table_df, 'July', 'August', 'September')
show_months(input_year, res_table_df, 'October', 'November', 'December')
# Daily view
if date_view:
st.header('View by Date')
input_date = st.date_input("Choose a date",
min_value=datetime(input_year, 1, 1),
max_value=datetime.today())
result_dict_daily = get_result_daily(input_date, result_dict)
show_res_daily_view(selected, result_dict_daily)