forked from skmhrk1209/PGGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·145 lines (138 loc) · 7.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
class GAN(object):
def __init__(self, generator, discriminator, real_input_fn, fake_input_fn, hyper_params):
# =========================================================================================
real_images = real_input_fn()
fake_latents = fake_input_fn()
# =========================================================================================
fake_images = generator(fake_latents)
# =========================================================================================
real_logits = discriminator(real_images)
fake_logits = discriminator(fake_images)
# =========================================================================================
# WGAN-GP + ACGAN
# [Improved Training of Wasserstein GANs]
# (https://arxiv.org/pdf/1704.00028.pdf)
# [Conditional Image Synthesis With Auxiliary Classifier GANs]
# (https://arxiv.org/pdf/1610.09585.pdf)
# -----------------------------------------------------------------------------------------
# generator
# wasserstein loss
generator_losses = -fake_logits[:, 0]
# auxiliary classification loss
if hyper_params.generator_auxiliary_classification_weight:
generator_auxiliary_classification_losses = tf.nn.softmax_cross_entropy_with_logits(labels=fake_labels, logits=fake_logits[:, 1:])
generator_losses += hyper_params.generator_auxiliary_classification_weight * generator_auxiliary_classification_losses
# -----------------------------------------------------------------------------------------
# discriminator
# wasserstein loss
discriminator_losses = -real_logits[:, 0] + fake_logits[:, 0]
# one-centered gradient penalty
if hyper_params.one_centered_gradient_penalty_weight:
def lerp(a, b, t): return t * a + (1. - t) * b
coefficients = tf.random_uniform([tf.shape(real_images)[0], 1, 1, 1])
interpolated_images = lerp(real_images, fake_images, coefficients)
interpolated_logits = discriminator(interpolated_images)
interpolated_gradients = tf.gradients(interpolated_logits[:, 0], [interpolated_images])[0]
interpolated_gradient_penalties = tf.square(1. - tf.sqrt(tf.reduce_sum(tf.square(interpolated_gradients), axis=[1, 2, 3]) + 1e-8))
discriminator_losses += hyper_params.one_centered_gradient_penalty_weight * interpolated_gradient_penalties
# auxiliary classification loss
if hyper_params.discriminator_auxiliary_classification_weight:
discriminator_auxiliary_classification_losses = tf.nn.softmax_cross_entropy_with_logits(labels=real_labels, logits=real_logits[:, 1:])
discriminator_auxiliary_classification_losses += tf.nn.softmax_cross_entropy_with_logits(labels=fake_labels, logits=fake_logits[:, 1:])
discriminator_losses += hyper_params.discriminator_auxiliary_classification_weight * discriminator_auxiliary_classification_losses
# =========================================================================================
# losss reduction
self.generator_loss = tf.reduce_mean(generator_losses)
self.discriminator_loss = tf.reduce_mean(discriminator_losses)
# =========================================================================================
generator_optimizer = tf.train.AdamOptimizer(
learning_rate=hyper_params.generator_learning_rate,
beta1=hyper_params.generator_beta1,
beta2=hyper_params.generator_beta2
)
discriminator_optimizer = tf.train.AdamOptimizer(
learning_rate=hyper_params.discriminator_learning_rate,
beta1=hyper_params.discriminator_beta1,
beta2=hyper_params.discriminator_beta2
)
# -----------------------------------------------------------------------------------------
generator_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="generator")
discriminator_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="discriminator")
# =========================================================================================
self.generator_train_op = generator_optimizer.minimize(
loss=self.generator_loss,
var_list=generator_variables,
global_step=tf.train.get_or_create_global_step()
)
self.discriminator_train_op = discriminator_optimizer.minimize(
loss=self.discriminator_loss,
var_list=discriminator_variables
)
# =========================================================================================
# scaffold
self.scaffold = tf.train.Scaffold(
init_op=tf.global_variables_initializer(),
local_init_op=tf.tables_initializer(),
saver=tf.train.Saver(
max_to_keep=10,
keep_checkpoint_every_n_hours=12,
),
summary_op=tf.summary.merge([
tf.summary.image(
name="real_images",
tensor=tf.transpose(real_images, [0, 2, 3, 1]),
max_outputs=4
),
tf.summary.image(
name="fake_images",
tensor=tf.transpose(fake_images, [0, 2, 3, 1]),
max_outputs=4
),
tf.summary.scalar(
name="generator_loss",
tensor=self.generator_loss
),
tf.summary.scalar(
name="discriminator_loss",
tensor=self.discriminator_loss
),
])
)
def train(self, total_steps, model_dir, save_checkpoint_steps,
save_summary_steps, log_step_count_steps, config):
with tf.train.SingularMonitoredSession(
scaffold=self.scaffold,
checkpoint_dir=model_dir,
config=config,
hooks=[
tf.train.CheckpointSaverHook(
checkpoint_dir=model_dir,
save_steps=save_checkpoint_steps,
scaffold=self.scaffold,
),
tf.train.SummarySaverHook(
output_dir=model_dir,
save_steps=save_summary_steps,
scaffold=self.scaffold
),
tf.train.LoggingTensorHook(
tensors=dict(
global_step=tf.train.get_global_step(),
generator_loss=self.generator_loss,
discriminator_loss=self.discriminator_loss
),
every_n_iter=log_step_count_steps,
),
tf.train.StepCounterHook(
output_dir=model_dir,
every_n_steps=log_step_count_steps,
),
tf.train.StopAtStepHook(
last_step=total_steps
)
]
) as session:
while not session.should_stop():
session.run(self.discriminator_train_op)
session.run(self.generator_train_op)