-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathassistants.py
135 lines (116 loc) · 5.68 KB
/
assistants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import json
import openai
from time import sleep
from dotenv import load_dotenv
import io # Import for in-memory file handling
# Import the create_ticket function from your script
from create_ticket import create_ticket, app
# Load your OpenAI API key from the .env file
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY')
def execute_function(function_name, arguments, from_user):
"""
Execute a function based on the function name and provided arguments.
"""
if function_name == 'create_ticket':
subject = arguments.get("subject")
type_of_question = arguments.get("type_of_question")
description = arguments.get("description")
return create_ticket(app.client, subject, from_user, type_of_question, description)
else:
return "Function not recognized"
def process_thread_with_assistant(user_query, assistant_id, model="gpt-4-1106-preview", from_user=None):
"""
Process a thread with an assistant and handle the response which includes text and images.
:param user_query: The user's query.
:param assistant_id: The ID of the assistant to be used.
:param model: The model version of the assistant.
:param from_user: The user ID from whom the query originated.
:return: A dictionary containing text responses and in-memory file objects.
"""
response_texts = [] # List to store text responses
response_files = [] # List to store file IDs
in_memory_files = [] # List to store in-memory file objects
try:
print("Creating a thread for the user query...")
thread = openai.Client().beta.threads.create()
print(f"Thread created with ID: {thread.id}")
print("Adding the user query as a message to the thread...")
openai.Client().beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=user_query
)
print("User query added to the thread.")
print("Creating a run to process the thread with the assistant...")
run = openai.Client().beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant_id,
model=model
)
print(f"Run created with ID: {run.id}")
while True:
print("Checking the status of the run...")
run_status = openai.Client().beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id
)
print(f"Current status of the run: {run_status.status}")
if run_status.status == "requires_action":
print("Run requires action. Executing specified function...")
tool_call = run_status.required_action.submit_tool_outputs.tool_calls[0]
function_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
function_output = execute_function(function_name, arguments, from_user)
function_output_str = json.dumps(function_output)
print("Submitting tool outputs...")
openai.Client().beta.threads.runs.submit_tool_outputs(
thread_id=thread.id,
run_id=run.id,
tool_outputs=[{
"tool_call_id": tool_call.id,
"output": function_output_str
}]
)
print("Tool outputs submitted.")
elif run_status.status in ["completed", "failed", "cancelled"]:
print("Fetching messages added by the assistant...")
messages = openai.Client().beta.threads.messages.list(thread_id=thread.id)
for message in messages.data:
if message.role == "assistant":
for content in message.content:
if content.type == "text":
response_texts.append(content.text.value)
elif content.type == "image_file":
file_id = content.image_file.file_id
response_files.append(file_id)
print("Messages fetched. Retrieving content for each file ID...")
for file_id in response_files:
try:
print(f"Retrieving content for file ID: {file_id}")
# Retrieve file content from OpenAI API
file_response = openai.Client().files.content(file_id)
if hasattr(file_response, 'content'):
# If the response has a 'content' attribute, use it as binary content
file_content = file_response.content
else:
# Otherwise, use the response directly
file_content = file_response
in_memory_file = io.BytesIO(file_content)
in_memory_files.append(in_memory_file)
print(f"In-memory file object created for file ID: {file_id}")
except Exception as e:
print(f"Failed to retrieve content for file ID: {file_id}. Error: {e}")
break
sleep(1)
return {"text": response_texts, "in_memory_files": in_memory_files}
except Exception as e:
print(f"An error occurred: {e}")
return {"text": [], "in_memory_files": []}
# Example usage
#user_query = "Show me a sample pie chart"
#assistant_id = "asst_P3bdvDVwLXQ49vK2AVjZNCd6"
#from_user_id = "U052337J8QH"
#response = process_thread_with_assistant(user_query, assistant_id, from_user=from_user_id)
#print("Final response:", response)