-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrpo.py
380 lines (300 loc) · 11.6 KB
/
trpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# TRPO algorithm
from rlkits.sampler import estimate_Q, aggregate_experience
from rlkits.sampler import ParallelEnvTrajectorySampler
from rlkits.policies import PolicyWithValue
from rlkits.utils.math import KL, conjugate_gradient
import rlkits.utils as U
from rlkits.utils import colorize
import rlkits.utils.logger as logger
import gym
import torch
import torch.optim as optim
from contextlib import contextmanager
from collections import deque
import numpy as np
import time
import os
@contextmanager
def timed(msg):
print(colorize(msg, color='magenta'))
tstart = time.time()
yield
print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
def compute_losses(oldpi, pi, trajectory):
"""Compute surrogate gain and policy gradient
trajectory is sampled from the old policy;
Use importance sampling to estimate the policy
gain of pi relative to oldpi
"""
obs = trajectory['obs']
#print('obs dtype', obs.dtype)
obs = torch.from_numpy(obs).float()
actions = trajectory['actions']
actions = torch.from_numpy(actions).float()
pi_dist = pi.dist(pi.policy_net(obs))
# no graph for old policy
# it should be treated as a constant
with torch.no_grad():
oldpi_dist = oldpi.dist(oldpi.policy_net(obs))
# estimate KL between oldpi and pi
# should be 0 in this function call
kl = KL(oldpi_dist, pi_dist).mean()
# importance sampling ratio
ratio = torch.exp(
pi_dist.log_prob(actions) - oldpi_dist.log_prob(actions)
)
if len(ratio.shape) > 1:
ratio = torch.squeeze(ratio, dim=1)
# estimate advantage of the old policy
adv = trajectory['Q'] - trajectory['vpreds']
# normalize advantage
adv = (adv - adv.mean())/adv.std()
# estimate the surrogate gain
adv = torch.from_numpy(adv)
assert ratio.shape == adv.shape, f"ratio : {ratio.shape}, adv: {adv.shape}"
surr_gain = torch.mean(ratio * adv)
res = {
'surr_gain': surr_gain,
'meankl': kl,
'entropy': pi_dist.entropy().mean()
}
return res
def compute_fvp(oldpi, pi, obs, p):
"""Compute Ap
where A is the Hessian of KL(oldpi || pi)
Use direct method to avoid explicitly computing A
"""
obs = torch.from_numpy(obs)
oldpi_dist = oldpi.dist(oldpi.policy_net(obs))
pi_dist = pi.dist(pi.policy_net(obs))
kl = KL(oldpi_dist, pi_dist).mean()
klgrads = torch.autograd.grad(kl,
pi.policy_net.parameters(), create_graph=True)
klgrads = U.flatten(klgrads)
Ap = torch.autograd.grad(torch.dot(klgrads, p),
pi.policy_net.parameters())
return U.flatten(Ap)
def sync_policies(oldpi, pi):
# oldpi <- pi
oldpi.policy_net.load_state_dict(pi.policy_net.state_dict())
oldpi.value_net.load_state_dict(pi.value_net.state_dict())
return
def policy_diff(oldpi, pi):
"""Compute the average distance between params of oldpi and pi"""
diff = 0.0
cnt = 0
for p1, p2 in zip(oldpi.policy_net.parameters(), pi.policy_net.parameters()):
diff += torch.mean(torch.abs(p1.data - p2.data))
cnt +=1
return diff / cnt
def pendulum_reward_transform(rew):
"""normalize to [-1, 1]"""
return (rew + 8.0)/16.0
def TRPO(*,
env,
nsteps,
total_timesteps,
log_interval,
log_dir,
ckpt_dir,
reward_transform,
gamma=0.99,
max_kl=1e-2,
cg_iters=10,
ent_coef=1e-2,
cg_damping=1e-2,
backtrack_steps=10,
v_iters=3,
batch_size=64,
v_lr=1e-4,
**network_kwargs):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
logger.configure(dir=log_dir)
ob_space = env.observation_space
ac_space = env.action_space
pi = PolicyWithValue(ob_space=ob_space,
ac_space=ac_space, ckpt_dir=ckpt_dir, **network_kwargs)
oldpi = PolicyWithValue(ob_space=ob_space,
ac_space=ac_space, ckpt_dir=ckpt_dir, **network_kwargs)
# optimizer for the value net
voptimizer = optim.Adam(pi.value_net.parameters(),
lr=v_lr)
# env sampler
sampler = ParallelEnvTrajectorySampler(
env=env,
policy=pi,
nsteps=nsteps,
reward_transform=reward_transform,
gamma=gamma
)
def fisher_vector_product(p):
"""Fisher vector product
Used for conjugate gradient algorithm
"""
return compute_fvp(oldpi, pi, trajectory['obs'], p) + cg_damping*p
best_ret = np.float('-inf')
rolling_buf_episode_rets = deque(maxlen=10)
rolling_buf_episode_lens = deque(maxlen=10)
start = time.perf_counter()
nframes = nsteps * env.nenvs
nupdates = total_timesteps // (nframes)
for update in range(1, nupdates + 1):
tstart = time.perf_counter()
# oldpi <- pi
sync_policies(oldpi, pi)
trajectory = sampler(callback=estimate_Q)
# aggregate exps from parallel envs
for k, v in trajectory.items():
if isinstance(v, np.ndarray):
trajectory[k] = aggregate_experience(v)
# losses before update (has gradient)
lossesbefore = compute_losses(oldpi, pi, trajectory)
# estimate policy gradient of pi
g = torch.autograd.grad(
lossesbefore['surr_gain'] + ent_coef*lossesbefore['entropy'],
pi.policy_net.parameters()
)
g = U.flatten(g)
if torch.allclose(g, torch.zeros_like(g)):
logger.log("Got zero gradient, not updating")
continue
with timed('conjugate gradient'):
npg, cginfo = conjugate_gradient(
fisher_vector_product, g,
cg_iters=cg_iters, verbose=False)
assert torch.isfinite(npg).all()
# stepsize of the update
shs = torch.dot(npg, compute_fvp(
oldpi, pi, trajectory['obs'], npg)).detach()
stepsize = torch.sqrt(2*max_kl/shs)
# backtrack line search
params0 = U.flatten(pi.policy_net.parameters())
expected_improve = torch.dot(g, stepsize * npg) # first order appr of surrgate gain
for _ in range(backtrack_steps):
newparams = params0 + stepsize * npg
U.set_from_flat(pi.policy_net, newparams)
with torch.no_grad():
losses = compute_losses(oldpi, pi, trajectory)
improve = losses['surr_gain'] - lossesbefore['surr_gain']
logger.log("Expected: %.3f Actual: %.3f"%(expected_improve, improve))
if any(not torch.isfinite(v).all() for _, v in losses.items()):
logger.log('Got infinite loss!')
elif losses['meankl'] > 1.5 * max_kl:
logger.log('Violated KL contraint')
elif improve < 0.0:
logger.log('Surrogate gain not improving')
else:
logger.log('Step size is OK')
break
stepsize *= 0.5
else:
logger.log('Canot find a good step size, resume to the old poliy')
U.set_from_flat(pi.policy_net, params0)
# update value net
obs, Q = trajectory['obs'], trajectory['Q']
obs, Q = torch.from_numpy(obs), torch.from_numpy(Q)
vlosses = []
for _ in range(v_iters):
for i in range(0, len(obs), batch_size):
x, y = obs[i:i+batch_size], Q[i:i+batch_size]
vpreds = pi.value_net(x).squeeze(dim=1)
vloss = torch.mean((vpreds - y)**2)
voptimizer.zero_grad()
vloss.backward()
voptimizer.step()
vlosses.append(vloss.detach().numpy())
tnow = time.perf_counter()
# logging
if update % log_interval == 0 or update == 1:
fps = int(nframes // (tnow - tstart))
logger.record_tabular('FPS', fps)
# policy loss
for k, v in lossesbefore.items():
logger.record_tabular(k, np.mean(v.detach().numpy()))
# value loss
logger.record_tabular('value_loss', np.mean(vlosses))
# conjugate gradient info
for k, v in cginfo.items():
pass
#logger.record_tabular(k, v)
# weights
piw, vw = pi.average_weight()
logger.record_tabular('policy_net_weight', piw.numpy())
logger.record_tabular('value_net_weight', vw.numpy())
# step size as the change in policy params
step_size = policy_diff(oldpi, pi)
logger.record_tabular('step_size', step_size.numpy())
vqdiff = np.mean((trajectory['Q'] - trajectory['vpreds'])**2)
logger.record_tabular('VQDiff', vqdiff)
logger.record_tabular('Q', np.mean(trajectory['Q']))
logger.record_tabular('vpreds', np.mean(trajectory['vpreds']))
# more logging
for ep_rets in trajectory['ep_rets']:
rolling_buf_episode_rets.extend(ep_rets)
for ep_lens in trajectory['ep_lens']:
rolling_buf_episode_lens.extend(ep_lens)
ret = safemean(rolling_buf_episode_rets)
logger.record_tabular("ma_ep_ret", ret)
logger.record_tabular('ma_ep_len',
safemean(rolling_buf_episode_lens))
logger.record_tabular('mean_step_rew',
np.mean(trajectory['rews']))
if ret != np.nan and ret > best_ret:
best_ret = ret
pi.save_ckpt('best')
logger.dump_tabular()
now = time.perf_counter()
logger.log(f'Total training time: {now - start}')
pi.save_ckpt('last')
torch.save(voptimizer, os.path.join(ckpt_dir, 'optim.pth'))
return
def safemean(l):
return np.nan if len(l) == 0 else np.mean(l)
if __name__ == '__main__':
from rlkits.env_batch import ParallelEnvBatch
from rlkits.env_wrappers import AutoReset, StartWithRandomActions
from rlkits.env_wrappers import TransformReward, Truncate
def stochastic_reward(rew):
eps = np.random.normal(loc=0.0, scale=0.1, size=rew.shape)
return rew + eps
def make_env():
env = gym.make('CartPole-v0').unwrapped
env = AutoReset(env)
env = StartWithRandomActions(env, max_random_actions=5)
return env
def normalize_pendulum(rew):
"""Reward normalizer for Pendulum"""
return (rew + 8)
def pendulum():
"""Make env for pendulum"""
env = gym.make('Pendulum-v0')
#env = TransformReward(env, normalize_pendulum)
#env = Truncate(env, lower_bound=-10)
env = AutoReset(env)
return env
nenvs = 8
nsteps = 1024
env = ParallelEnvBatch(pendulum, nenvs=nenvs)
TRPO(
env=env,
nsteps=1024,
total_timesteps=nenvs*nsteps*1000,
gamma=0.99,
log_interval=10,
reward_transform=None,
log_dir='/home/ubuntu/reinforcement-learning/experiments/TRPO/pendulum/4',
ckpt_dir='/home/ubuntu/reinforcement-learning/experiments/TRPO/pendulum/4',
max_kl=1e-2,
ent_coef=0.0,
cg_iters=10,
cg_damping=1e-2,
backtrack_steps=10,
v_iters=1,
batch_size=nenvs*nsteps // 4,
v_lr=1e-4,
hidden_layers=[256, 256, 64],
activation=torch.nn.Tanh
)