diff --git a/lerobot/common/datasets/utils.py b/lerobot/common/datasets/utils.py index af5b03cc0..1490addad 100644 --- a/lerobot/common/datasets/utils.py +++ b/lerobot/common/datasets/utils.py @@ -17,9 +17,11 @@ import json import logging import textwrap +from collections.abc import Iterator from itertools import accumulate from pathlib import Path from pprint import pformat +from types import SimpleNamespace from typing import Any import datasets @@ -502,3 +504,58 @@ def create_lerobot_dataset_card( template_path=str(card_template_path), **kwargs, ) + + +class IterableNamespace(SimpleNamespace): + """ + A namespace object that supports both dictionary-like iteration and dot notation access. + Automatically converts nested dictionaries into IterableNamespaces. + + This class extends SimpleNamespace to provide: + - Dictionary-style iteration over keys + - Access to items via both dot notation (obj.key) and brackets (obj["key"]) + - Dictionary-like methods: items(), keys(), values() + - Recursive conversion of nested dictionaries + + Args: + dictionary: Optional dictionary to initialize the namespace + **kwargs: Additional keyword arguments passed to SimpleNamespace + + Examples: + >>> data = {"name": "Alice", "details": {"age": 25}} + >>> ns = IterableNamespace(data) + >>> ns.name + 'Alice' + >>> ns.details.age + 25 + >>> list(ns.keys()) + ['name', 'details'] + >>> for key, value in ns.items(): + ... print(f"{key}: {value}") + name: Alice + details: IterableNamespace(age=25) + """ + + def __init__(self, dictionary: dict[str, Any] = None, **kwargs): + super().__init__(**kwargs) + if dictionary is not None: + for key, value in dictionary.items(): + if isinstance(value, dict): + setattr(self, key, IterableNamespace(value)) + else: + setattr(self, key, value) + + def __iter__(self) -> Iterator[str]: + return iter(vars(self)) + + def __getitem__(self, key: str) -> Any: + return vars(self)[key] + + def items(self): + return vars(self).items() + + def values(self): + return vars(self).values() + + def keys(self): + return vars(self).keys() diff --git a/lerobot/scripts/visualize_dataset_html.py b/lerobot/scripts/visualize_dataset_html.py index 2c81fbfc5..ec6eca22f 100644 --- a/lerobot/scripts/visualize_dataset_html.py +++ b/lerobot/scripts/visualize_dataset_html.py @@ -53,20 +53,29 @@ """ import argparse +import csv +import json import logging +import re import shutil +import tempfile +from io import StringIO from pathlib import Path -import tqdm -from flask import Flask, redirect, render_template, url_for +import numpy as np +import pandas as pd +import requests +from flask import Flask, redirect, render_template, request, url_for +from lerobot import available_datasets from lerobot.common.datasets.lerobot_dataset import LeRobotDataset +from lerobot.common.datasets.utils import IterableNamespace from lerobot.common.utils.utils import init_logging def run_server( - dataset: LeRobotDataset, - episodes: list[int], + dataset: LeRobotDataset | IterableNamespace | None, + episodes: list[int] | None, host: str, port: str, static_folder: Path, @@ -76,10 +85,50 @@ def run_server( app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache @app.route("/") - def index(): - # home page redirects to the first episode page - [dataset_namespace, dataset_name] = dataset.repo_id.split("/") - first_episode_id = episodes[0] + def hommepage(dataset=dataset): + if dataset: + dataset_namespace, dataset_name = dataset.repo_id.split("/") + return redirect( + url_for( + "show_episode", + dataset_namespace=dataset_namespace, + dataset_name=dataset_name, + episode_id=0, + ) + ) + + dataset_param, episode_param = None, None + all_params = request.args + if "dataset" in all_params: + dataset_param = all_params["dataset"] + if "episode" in all_params: + episode_param = int(all_params["episode"]) + + if dataset_param: + dataset_namespace, dataset_name = dataset_param.split("/") + return redirect( + url_for( + "show_episode", + dataset_namespace=dataset_namespace, + dataset_name=dataset_name, + episode_id=episode_param if episode_param is not None else 0, + ) + ) + + featured_datasets = [ + "lerobot/aloha_static_cups_open", + "lerobot/columbia_cairlab_pusht_real", + "lerobot/taco_play", + ] + return render_template( + "visualize_dataset_homepage.html", + featured_datasets=featured_datasets, + lerobot_datasets=available_datasets, + ) + + @app.route("//") + def show_first_episode(dataset_namespace, dataset_name): + first_episode_id = 0 return redirect( url_for( "show_episode", @@ -90,30 +139,85 @@ def index(): ) @app.route("///episode_") - def show_episode(dataset_namespace, dataset_name, episode_id): + def show_episode(dataset_namespace, dataset_name, episode_id, dataset=dataset, episodes=episodes): + repo_id = f"{dataset_namespace}/{dataset_name}" + try: + if dataset is None: + dataset = get_dataset_info(repo_id) + except FileNotFoundError: + return ( + "Make sure to convert your LeRobotDataset to v2 & above. See how to convert your dataset at https://github.com/huggingface/lerobot/pull/461", + 400, + ) + dataset_version = ( + dataset.meta._version if isinstance(dataset, LeRobotDataset) else dataset.codebase_version + ) + match = re.search(r"v(\d+)\.", dataset_version) + if match: + major_version = int(match.group(1)) + if major_version < 2: + return "Make sure to convert your LeRobotDataset to v2 & above." + + episode_data_csv_str, columns = get_episode_data(dataset, episode_id) dataset_info = { - "repo_id": dataset.repo_id, - "num_samples": dataset.num_frames, - "num_episodes": dataset.num_episodes, + "repo_id": f"{dataset_namespace}/{dataset_name}", + "num_samples": dataset.num_frames + if isinstance(dataset, LeRobotDataset) + else dataset.total_frames, + "num_episodes": dataset.num_episodes + if isinstance(dataset, LeRobotDataset) + else dataset.total_episodes, "fps": dataset.fps, } - video_paths = [dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys] - tasks = dataset.meta.episodes[episode_id]["tasks"] - videos_info = [ - {"url": url_for("static", filename=video_path), "filename": video_path.name} - for video_path in video_paths - ] + if isinstance(dataset, LeRobotDataset): + video_paths = [ + dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys + ] + videos_info = [ + {"url": url_for("static", filename=video_path), "filename": video_path.parent.name} + for video_path in video_paths + ] + tasks = dataset.meta.episodes[0]["tasks"] + else: + video_keys = [key for key, ft in dataset.features.items() if ft["dtype"] == "video"] + videos_info = [ + { + "url": f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + + dataset.video_path.format( + episode_chunk=int(episode_id) // dataset.chunks_size, + video_key=video_key, + episode_index=episode_id, + ), + "filename": video_key, + } + for video_key in video_keys + ] + + response = requests.get( + f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl" + ) + response.raise_for_status() + # Split into lines and parse each line as JSON + tasks_jsonl = [json.loads(line) for line in response.text.splitlines() if line.strip()] + + filtered_tasks_jsonl = [row for row in tasks_jsonl if row["episode_index"] == episode_id] + tasks = filtered_tasks_jsonl[0]["tasks"] + videos_info[0]["language_instruction"] = tasks - ep_csv_url = url_for("static", filename=get_ep_csv_fname(episode_id)) + if episodes is None: + episodes = list( + range(dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes) + ) + return render_template( "visualize_dataset_template.html", episode_id=episode_id, episodes=episodes, dataset_info=dataset_info, videos_info=videos_info, - ep_csv_url=ep_csv_url, - has_policy=False, + episode_data_csv_str=episode_data_csv_str, + columns=columns, ) app.run(host=host, port=port) @@ -124,46 +228,84 @@ def get_ep_csv_fname(episode_id: int): return ep_csv_fname -def write_episode_data_csv(output_dir, file_name, episode_index, dataset): - """Write a csv file containg timeseries data of an episode (e.g. state and action). +def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index): + """Get a csv str containing timeseries data of an episode (e.g. state and action). This file will be loaded by Dygraph javascript to plot data in real time.""" - from_idx = dataset.episode_data_index["from"][episode_index] - to_idx = dataset.episode_data_index["to"][episode_index] - + columns = [] has_state = "observation.state" in dataset.features has_action = "action" in dataset.features # init header of csv with state and action names header = ["timestamp"] if has_state: - dim_state = dataset.meta.shapes["observation.state"][0] + dim_state = ( + dataset.meta.shapes["observation.state"][0] + if isinstance(dataset, LeRobotDataset) + else dataset.features["observation.state"].shape[0] + ) header += [f"state_{i}" for i in range(dim_state)] + column_names = dataset.features["observation.state"]["names"] + while not isinstance(column_names, list): + column_names = list(column_names.values())[0] + columns.append({"key": "state", "value": column_names}) if has_action: - dim_action = dataset.meta.shapes["action"][0] + dim_action = ( + dataset.meta.shapes["action"][0] + if isinstance(dataset, LeRobotDataset) + else dataset.features.action.shape[0] + ) header += [f"action_{i}" for i in range(dim_action)] - - columns = ["timestamp"] - if has_state: - columns += ["observation.state"] - if has_action: - columns += ["action"] - - rows = [] - data = dataset.hf_dataset.select_columns(columns) - for i in range(from_idx, to_idx): - row = [data[i]["timestamp"].item()] + column_names = dataset.features["action"]["names"] + while not isinstance(column_names, list): + column_names = list(column_names.values())[0] + columns.append({"key": "action", "value": column_names}) + + if isinstance(dataset, LeRobotDataset): + from_idx = dataset.episode_data_index["from"][episode_index] + to_idx = dataset.episode_data_index["to"][episode_index] + selected_columns = ["timestamp"] if has_state: - row += data[i]["observation.state"].tolist() + selected_columns += ["observation.state"] if has_action: - row += data[i]["action"].tolist() - rows.append(row) + selected_columns += ["action"] + data = ( + dataset.hf_dataset.select(range(from_idx, to_idx)) + .select_columns(selected_columns) + .with_format("numpy") + ) + rows = np.hstack( + (np.expand_dims(data["timestamp"], axis=1), *[data[col] for col in selected_columns[1:]]) + ).tolist() + else: + repo_id = dataset.repo_id + selected_columns = ["timestamp"] + if "observation.state" in dataset.features: + selected_columns.append("observation.state") + if "action" in dataset.features: + selected_columns.append("action") + + url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format( + episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index + ) + df = pd.read_parquet(url) + data = df[selected_columns] # Select specific columns + rows = np.hstack( + ( + np.expand_dims(data["timestamp"], axis=1), + *[np.vstack(data[col]) for col in selected_columns[1:]], + ) + ).tolist() - output_dir.mkdir(parents=True, exist_ok=True) - with open(output_dir / file_name, "w") as f: - f.write(",".join(header) + "\n") - for row in rows: - row_str = [str(col) for col in row] - f.write(",".join(row_str) + "\n") + # Convert data to CSV string + csv_buffer = StringIO() + csv_writer = csv.writer(csv_buffer) + # Write header + csv_writer.writerow(header) + # Write data rows + csv_writer.writerows(rows) + csv_string = csv_buffer.getvalue() + + return csv_string, columns def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]: @@ -175,9 +317,31 @@ def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str] ] +def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]: + # check if the dataset has language instructions + if "language_instruction" not in dataset.features: + return None + + # get first frame index + first_frame_idx = dataset.episode_data_index["from"][ep_index].item() + + language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"] + # TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored + # with the tf.tensor appearing in the string + return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)") + + +def get_dataset_info(repo_id: str) -> IterableNamespace: + response = requests.get(f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json") + response.raise_for_status() # Raises an HTTPError for bad responses + dataset_info = response.json() + dataset_info["repo_id"] = repo_id + return IterableNamespace(dataset_info) + + def visualize_dataset_html( - dataset: LeRobotDataset, - episodes: list[int] = None, + dataset: LeRobotDataset | None, + episodes: list[int] | None = None, output_dir: Path | None = None, serve: bool = True, host: str = "127.0.0.1", @@ -186,11 +350,11 @@ def visualize_dataset_html( ) -> Path | None: init_logging() - if len(dataset.meta.image_keys) > 0: - raise NotImplementedError(f"Image keys ({dataset.meta.image_keys=}) are currently not supported.") + template_dir = Path(__file__).resolve().parent.parent / "templates" if output_dir is None: - output_dir = f"outputs/visualize_dataset_html/{dataset.repo_id}" + # Create a temporary directory that will be automatically cleaned up + output_dir = tempfile.mkdtemp(prefix="lerobot_visualize_dataset_") output_dir = Path(output_dir) if output_dir.exists(): @@ -201,28 +365,33 @@ def visualize_dataset_html( output_dir.mkdir(parents=True, exist_ok=True) - # Create a simlink from the dataset video folder containg mp4 files to the output directory - # so that the http server can get access to the mp4 files. static_dir = output_dir / "static" static_dir.mkdir(parents=True, exist_ok=True) - ln_videos_dir = static_dir / "videos" - if not ln_videos_dir.exists(): - ln_videos_dir.symlink_to((dataset.root / "videos").resolve()) - - template_dir = Path(__file__).resolve().parent.parent / "templates" - if episodes is None: - episodes = list(range(dataset.num_episodes)) + if dataset is None: + if serve: + run_server( + dataset=None, + episodes=None, + host=host, + port=port, + static_folder=static_dir, + template_folder=template_dir, + ) + else: + image_keys = dataset.meta.image_keys if isinstance(dataset, LeRobotDataset) else [] + if len(image_keys) > 0: + raise NotImplementedError(f"Image keys ({image_keys=}) are currently not supported.") - logging.info("Writing CSV files") - for episode_index in tqdm.tqdm(episodes): - # write states and actions in a csv (it can be slow for big datasets) - ep_csv_fname = get_ep_csv_fname(episode_index) - # TODO(rcadene): speedup script by loading directly from dataset, pyarrow, parquet, safetensors? - write_episode_data_csv(static_dir, ep_csv_fname, episode_index, dataset) + # Create a simlink from the dataset video folder containg mp4 files to the output directory + # so that the http server can get access to the mp4 files. + if isinstance(dataset, LeRobotDataset): + ln_videos_dir = static_dir / "videos" + if not ln_videos_dir.exists(): + ln_videos_dir.symlink_to((dataset.root / "videos").resolve()) - if serve: - run_server(dataset, episodes, host, port, static_dir, template_dir) + if serve: + run_server(dataset, episodes, host, port, static_dir, template_dir) def main(): @@ -231,7 +400,7 @@ def main(): parser.add_argument( "--repo-id", type=str, - required=True, + default=None, help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).", ) parser.add_argument( @@ -246,6 +415,12 @@ def main(): default=None, help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.", ) + parser.add_argument( + "--load-from-hf-hub", + type=int, + default=0, + help="Load videos and parquet files from HF Hub rather than local system.", + ) parser.add_argument( "--episodes", type=int, @@ -287,11 +462,19 @@ def main(): args = parser.parse_args() kwargs = vars(args) repo_id = kwargs.pop("repo_id") + load_from_hf_hub = kwargs.pop("load_from_hf_hub") root = kwargs.pop("root") local_files_only = kwargs.pop("local_files_only") - dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only) - visualize_dataset_html(dataset, **kwargs) + dataset = None + if repo_id: + dataset = ( + LeRobotDataset(repo_id, root=root, local_files_only=local_files_only) + if not load_from_hf_hub + else get_dataset_info(repo_id) + ) + + visualize_dataset_html(dataset, **vars(args)) if __name__ == "__main__": diff --git a/lerobot/templates/visualize_dataset_homepage.html b/lerobot/templates/visualize_dataset_homepage.html new file mode 100644 index 000000000..adff07be7 --- /dev/null +++ b/lerobot/templates/visualize_dataset_homepage.html @@ -0,0 +1,68 @@ + + + + + + Interactive Video Background Page + + + + +
+ +
+
+
+
+

LeRobot Dataset Visualizer

+ + create & train your own robots + +

+
+

Example Datasets:

+
    + {% for dataset in featured_datasets %} +
  • {{ dataset }}
  • + {% endfor %} +
+
+
+
+ + +
+ +
+ More example datasets +
    + {% for dataset in lerobot_datasets %} +
  • {{ dataset }}
  • + {% endfor %} +
+
+
+ + \ No newline at end of file diff --git a/lerobot/templates/visualize_dataset_template.html b/lerobot/templates/visualize_dataset_template.html index 0fa1e713e..12d6e991c 100644 --- a/lerobot/templates/visualize_dataset_template.html +++ b/lerobot/templates/visualize_dataset_template.html @@ -31,11 +31,16 @@ }">
-

{{ dataset_info.repo_id }}

+ + +

{{ dataset_info.repo_id }}

+
  • - Number of samples/frames: {{ dataset_info.num_frames }} + Number of samples/frames: {{ dataset_info.num_samples }}
  • Number of episodes: {{ dataset_info.num_episodes }} @@ -93,10 +98,10 @@

-
+
{% for video_info in videos_info %} -
-

{{ video_info.filename }}

+
+

{{ video_info.filename }}