Skip to content

Latest commit

 

History

History
305 lines (203 loc) · 9.64 KB

README.md

File metadata and controls

305 lines (203 loc) · 9.64 KB

PDF metadata extraction

A Docker-powered service for extracting pieces of information from PDFs


Contents

Dependencies

Requirements

  • 12Gb RAM memory

Docker containers

A redis server is needed to use the service asynchronously. For that matter, it can be used the command make start:testing that has a built-in redis server.

Containers with make start

Alt logo

Containers with make start-test

Alt logo

How to use it

  1. Start the service with docker compose

    make start

  2. Post xml files to train

    curl -X POST -F 'file=@/PATH/TO/PDF/xml_file_name.xml' localhost:5056/xml_to_train/tenant_name/id

  3. Post xml files to get suggestions

    curl -X POST -F 'file=@/PATH/TO/PDF/xml_file_name.xml' localhost:5056/xml_to_predict/tenant_name/id

Alt logo

  1. Post labeled data

    Text, numeric or date cases:

    curl -X POST --header "Content-Type: application/json" --data '{"xml_file_name": "xml_file_name.xml",
                             "id": "property_id",
                             "tenant": "tenant_name",
                             "language_iso": "en",
                             "label_text": "text",
                             "page_width": 612,
                             "page_height": 792,
                             "xml_segments_boxes": [{"left": 124, "top": 48, "width": 83, "height": 13, "page_number": 1}],
                             "label_segments_boxes": [{"left": 124, "top": 48, "width": 83, "height": 13, "page_number": 1}]
                             }' localhost:5056/labeled_data

Multi-option case:

    curl -X POST --header "Content-Type: application/json" --data '{"xml_file_name": "xml_file_name.xml",
                             "id": "property_id",
                             "tenant": "tenant_name",
                             "language_iso": "en",
                             "values": [{"id": "1", "label": "option 1"}, {"id": "2", "label": "option 2"}],
                             "page_width": 612,
                             "page_height": 792,
                             "xml_segments_boxes": [{"left": 124, "top": 48, "width": 83, "height": 13, "page_number": 1}]
                             }' localhost:5056/labeled_data

Alt logo

  1. Post data to predict
curl -X POST --header "Content-Type: application/json" --data '{"xml_file_name": "xml_file_name.xml",
                             "id": "property_id",
                             "tenant": "tenant_name",
                             "page_width": 612,
                             "page_height": 792,
                             "xml_segments_boxes": [{"left": 124, "top": 48, "width": 83, "height": 13, "page_number": 1}]
                             }' localhost:5056/prediction_data

Alt logo

  1. Create model and calculate suggestions

To create the model or calculate the suggestions, a message to redis should be sent. The name for the tasks queue is " information_extraction_tasks"

queue = RedisSMQ(host='127.0.0.1', port='6579', qname='information_extraction_tasks', quiet=False)

# Text, numeric or date cases:

# Create model
queue.sendMessage(delay=0).message('{"tenant": "tenant_name", "task": "create_model", "params": {"id": "property_id"}}').execute()
# Calculate suggestions
queue.sendMessage(delay=0).message('{"tenant": "tenant_name", "task": "suggestions", "params": {"id": "property_id"}}').execute()

# Multi-option case:

# Create model
# The options parameter are all the posible values for all the PDF
# The multi_value parameter tells if the algorithm can pick more than one option per PDF
queue.sendMessage(delay=0).message('{"tenant": "tenant_name", "task": "create_model", "params": {"id": "property_id" , "options": [{"id": "1", "label": "option 1"}, {"id": "2", "label": "option 2"}, {"id": "3", "label": "option 3"}], "multi_value": false}}').execute()
# Calculate suggestions
queue.sendMessage(delay=0).message('{"tenant": "tenant_name", "task": "suggestions", "params": {"id": "property_id"}}').execute()

Alt logo

  1. Get service logs

A Redis queue stores the service logs for both training and prediction processes.

queue = RedisSMQ(host='127.0.0.1', port='6579', qname='information_extraction_logs', quiet=False)
results_message = queue.receiveMessage().exceptions(False).execute()

# The logs have the following format
# {"tenant": "tenant_name", 
# "extraction_name": "extraction_id", 
# "severity": "info" || "error", 
# "message": ""}
  1. Get results

There is a redis queue where it is possible to get notified when the different tasks finish

queue = RedisSMQ(host='127.0.0.1', port='6579', qname='information_extraction_results', quiet=False)
results_message = queue.receiveMessage().exceptions(False).execute()

# The models have been created message
# {"tenant": "tenant_name", 
# "task": "create_model", 
# "params": {"id": "property_id"}, 
# "success": true, 
# "error_message": ""}

# The suggestions have been computed
# {"tenant": "tenant_name", 
# "task": "suggestions", 
# "params": {"id": "property_id"}, 
# "success": true, 
# "error_message": "", 
# "data_url":""}

Get suggestions

curl -X GET  localhost:5056/get_suggestions/tenant_name/id

or in python

requests.get(results_message.data_url)

Alt logo

The suggestions have the following format:

Text, numeric or date cases:

        [{
        "tenant": "tenant", 
        "id": "property_id", 
        "xml_file_name": "xml_file_name_1", 
        "text": "suggestion_text_1", 
        "segment_text": "segment_text_1",
        "segments_boxes": [{"left": 1, "top": 2, "width": 3, "height": 4, "page_number": 1}]
        }, 
        {
        "tenant": "tenant", 
        "id": "property_id", 
        "xml_file_name": "xml_file_name_2", 
        "text": "suggestion_text_2", 
        "segment_text": "segment_text_2",
        "segments_boxes": [{"left": 1, "top": 2, "width": 3, "height": 4, "page_number": 2}]
        }, ... ]

Multi-option case:

        [{
        "tenant": "tenant", 
        "id": "property_id", 
        "xml_file_name": "xml_file_name_1", 
        "values": [{"id": "1", "label": "option 1"}], 
        "segment_text": "segment_text_1",
        "segments_boxes": [{"left": 1, "top": 2, "width": 3, "height": 4, "page_number": 1}]
        }, 
        {
        "tenant": "tenant", 
        "id": "property_id", 
        "xml_file_name": "xml_file_name_2", 
        "values": [{"id": "2", "label": "option 2"}], 
        "segment_text": "segment_text_2",
        "segments_boxes": [{"left": 1, "top": 2, "width": 3, "height": 4, "page_number": 2}]
        }, ... ]

  1. Stop the service

    make stop

How to use GPU

To use the GPU in the docker containers

  1. Install the package:

    nvidia-container-toolkit

  2. Restart docker service

    systemctl restart docker

  3. Start the service with

    make start_gpu

HTTP server

Alt logo

The container HTTP server is coded using Python 3.9 and uses the FastApi web framework.

If the service is running, the end point definitions can be founded in the following url:

http://localhost:5056/docs

The end points code can be founded inside the file app.py.

The errors are reported to the file models_data/service.log, if the configuration is not changed ( see Get service logs)

Queue processor

Alt logo

The container Queue processor is coded using Python 3.9, and it is on charge of the communication with redis.

The code can be founded in the file QueueProcessor.py and it uses the library RedisSMQ to interact with the redis queues.

Service configuration

See environment variables in the file .env

Set up environment for development

It works with Python 3.9 [install] (https://runnable.com/docker/getting-started/)

make install_venv

Execute tests

make start_for_testing
make test

Execute performance test

cd src && python check_performance.py

And the results are stored in src/performance/results

Troubleshooting

Issue: Error downloading pip wheel

Solution: Change RAM memory used by the docker containers to 3Gb or 4Gb