-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
32 lines (28 loc) · 1.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from config import *
def model_create():
# ## Define a Convolutional Neural Network
dr = 0.6
seed = 7
np.random.seed(seed)
input_image_shape = (128, 128, 3)
model = Sequential()
model.add(Conv2D(32, (5, 5), strides=(1, 1), input_shape=input_image_shape, padding='valid', activation='relu',
kernel_initializer='uniform'))
model.add(Dropout(dr))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='uniform'))
model.add(Dropout(dr))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dropout(dr))
model.add(Dense(num_classes, activation='softmax'))
# model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
return model
# You can view a summary of the network using the `summary()` function: