Skip to content

Files

Latest commit

ac85b16 · Nov 8, 2017

History

History
This branch is 322 commits ahead of johndpope/Data-Science-ArrayFire-GPU:master.

docker

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 19, 2017
Sep 19, 2017
Sep 18, 2017
Nov 8, 2017
Jul 21, 2017
Nov 8, 2017
Nov 8, 2017
Sep 18, 2017
Nov 8, 2017
Jul 19, 2017
Nov 8, 2017
Nov 8, 2017
Nov 8, 2017

All-in-one Jupyter Docker image for GPU Deep Learning using PyCUDA, PyTORCH, CUDA etc.

Build and Run the GPU image (see below for more info)

docker build -t quantscientist/pycuda -f Dockerfile.gpu3 .

nvidia-docker run -it -p 5555:5555 -p 7842:7842 -p 8787:8787 -p 8786:8786 -p 8788:8788 -v ~/db/Dropbox/dev2/:/root/sharedfolder quantscientist/pycuda bash

This repository includes utilities to build and run my NVIDIA Docker image for the Deep Learning School: https://www.meetup.com/TensorFlow-Tel-Aviv/events/241762893/

NOTE: Building this image may take several hours since CMAKE is being built from source. https://github.com/QuantScientist/deep-ml-meetups

Also available on docker hub (Build on docker hub usually failes because of the long build time): https://hub.docker.com/r/quantscientist/deep-learning-boot-camp/

docker pull quantscientist/deep-learning-boot-camp

cuda

Please be aware that this project is currently experimental.

CUDA requirements

Running a CUDA container requires a machine with at least one CUDA-capable GPU and a driver compatible with the CUDA toolkit version you are using.

NVIDIA drivers are backward-compatible with CUDA toolkits versions:

CUDA toolkit version Minimum driver version
7.0 >= 346.46
7.5 >= 352.39

** We use CUDA 8.0. **

Get the toolkit:

sudo apt-get install nvidia-cuda-toolkit

Get nsight IDE:

sudo apt-get install nvidia-nsight

Install nvidia-docker and nvidia-docker-plugin

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb

Get nvidia docker (requires docker-engine NOT docker.io):

nvidia-docker run --rm nvidia/cuda nvidia-smi

Image contents

On top of all the fancy deep learning libraries, this docker image contains:

Ubuntu 16.04 CUDA 8.0 (GPU version only) cuDNN v5 (GPU version only) Tensorflow Theano Keras iPython/Jupyter Notebook Numpy, SciPy, Pandas, Scikit Learn, Matplotlib A few common libraries used for deep learning

  • ArrayFire
  • PyCUDA
  • Python
  • LLVM
  • LLDB
  • Snappy
  • Numba

Build the image

GPU version

docker build -t quantscientist/pycuda -f Dockerfile.gpu3 .

CPU version

docker build -t quantscientist/pycuda -f Dockerfile.cpu .

Run the GPU image

nvidia-docker run -it -p 5555:5555 -p 7842:7842 -p 8787:8787 -p 8786:8786 -p 8788:8788 -v ~/db/Dropbox/dev2/:/root/sharedfolder quantscientist/pycuda bash

Run the GPU image

docker run -it -p 5555:5555 -p 7842:7842 -p 8787:8787 -p 8786:8786 -p 8788:8788 -v /myhome/data-science/:/root/sharedfolder --env="DISPLAY" quantscientist/pycuda bash

Run Jupyter

chmod +x run_jupyter.sh ./run_jupyter.sh

OR

docker build -t quantscientist/gpu -f Dockerfile.gpu .

Issues and Contributing