We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
NaN value in loss when training for a few iterations with AMP. The code is from: link
import torch import torchvision LR = 0.001 DOWNLOAD = True DATA = "datasets/cifar10/" use_amp=True transform = torchvision.transforms.Compose( [ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16) train_len = len(train_loader) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9) scaler = torch.amp.GradScaler(enabled=use_amp) model.train() model = model.to("xpu") criterion = criterion.to("xpu") print(f"Initiating training") for batch_idx, (data, target) in enumerate(train_loader): data = data.to("xpu") target = target.to("xpu") # set dtype=torch.bfloat16 for BF16 with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp): output = model(data) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() optimizer.zero_grad() if (batch_idx + 1) % 10 == 0: iteration_loss = loss.item() print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}") torch.save( { "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, "checkpoint.pth", ) print("Execution finished")
[W424 00:27:56.943348449 OperatorEntry.cpp:154] Warning: Warning only once for all operators, other operators may also be overridden. Overriding a previously registered kernel for the same operator and the same dispatch key operator: aten::_validate_compressed_sparse_indices(bool is_crow, Tensor compressed_idx, Tensor plain_idx, int cdim, int dim, int nnz) -> () registered at /pytorch/build/aten/src/ATen/RegisterSchema.cpp:6 dispatch key: XPU previous kernel: registered at /pytorch/build/aten/src/ATen/RegisterCPU.cpp:30477 new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:468 (function operator()) Collecting environment information... ===================================== PyTorch version: 2.6.0+xpu PyTorch CXX11 ABI: Yes IPEX version: 2.6.10+xpu IPEX commit: b3397a609 Build type: Release OS: Debian GNU/Linux 12 (bookworm) (x86_64) GCC version: (Debian 12.2.0-14) 12.2.0 Clang version: N/A IGC version: N/A CMake version: N/A Libc version: glibc-2.36 Python version: 3.11.2 (main, Nov 30 2024, 21:22:50) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-6.11.0-24-generic-x86_64-with-glibc2.36 Is XPU available: True DPCPP runtime: N/A MKL version: N/A GPU models and configuration onboard: N/A GPU models and configuration detected: * [0] _XpuDeviceProperties(name='Intel(R) Graphics [0xe20b]', platform_name='Intel(R) oneAPI Unified Runtime over Level-Zero', type='gpu', driver_version='1.6.31294+20', total_memory=11605MB, max_compute_units=160, gpu_eu_count=160, gpu_subslice_count=20, max_work_group_size=1024, max_num_sub_groups=64, sub_group_sizes=[16 32], has_fp16=1, has_fp64=1, has_atomic64=1) Driver version: * intel_opencl: 24.39.31294.20-1032~22.04 * level_zero: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation Model name: Intel(R) Xeon(R) w5-3435X BIOS Model name: Intel(R) Xeon(R) w5-3435X CPU @ 3.1GHz BIOS CPU family: 179 CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 8 CPU(s) scaling MHz: 31% CPU max MHz: 4700.0000 CPU min MHz: 800.0000 BogoMIPS: 6192.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 768 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 32 MiB (16 instances) L3 cache: 45 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip] dpcpp-cpp-rt==2025.0.4 [pip] impi-devel==2021.14.1 [pip] impi-rt==2021.14.1 [pip] intel-cmplr-lib-rt==2025.0.4 [pip] intel-cmplr-lib-ur==2025.0.4 [pip] intel-cmplr-lic-rt==2025.0.4 [pip] intel_extension_for_pytorch==2.6.10+xpu [pip] intel-opencl-rt==2025.0.4 [pip] intel-openmp==2025.0.4 [pip] intel-pti==0.10.0 [pip] intel-sycl-rt==2025.0.4 [pip] mkl==2025.0.1 [pip] mkl-dpcpp==2025.0.1 [pip] numpy==2.2.5 [pip] oneccl==2021.14.1 [pip] oneccl-bind-pt==2.6.0+xpu [pip] oneccl-devel==2021.14.1 [pip] onemkl-sycl-blas==2025.0.1 [pip] onemkl-sycl-datafitting==2025.0.1 [pip] onemkl-sycl-dft==2025.0.1 [pip] onemkl-sycl-lapack==2025.0.1 [pip] onemkl-sycl-rng==2025.0.1 [pip] onemkl-sycl-sparse==2025.0.1 [pip] onemkl-sycl-stats==2025.0.1 [pip] onemkl-sycl-vm==2025.0.1 [pip] pytorch-triton-xpu==3.2.0 [pip] torch==2.6.0+xpu [pip] torchao==0.10.0+xpu [pip] torchaudio==2.6.0+xpu [pip] torchvision==0.21.0+xpu [pip] transformers==4.51.3
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Describe the bug
NaN value in loss when training for a few iterations with AMP. The code is from: link
Versions
The text was updated successfully, but these errors were encountered: