-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
135 lines (114 loc) · 5.33 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import numpy as np
import torch
from data.kitti_data import KittiDataset
from data.nuscenes_data import NuscenesDataset
from models.models import HRegNet
from models.utils import calc_error_np, set_seed
import argparse
import datetime
def parse_args():
parser = argparse.ArgumentParser(description='HRegNet')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--gpu', type=str, default='1')
parser.add_argument('--root', type=str, default='')
parser.add_argument('--npoints', type=int, default=16384)
parser.add_argument('--dataset', type=str, default='kitti')
parser.add_argument('--use_fps', action='store_true')
parser.add_argument('--data_list', type=str, default='')
parser.add_argument('--use_weights', action='store_true')
parser.add_argument('--pretrain_weights', type=str, default='')
parser.add_argument('--voxel_size', type=float, default=0.3)
parser.add_argument('--save_dir',type=str, default='')
parser.add_argument('--augment', type=float, default=0.0)
parser.add_argument('--freeze_detector', action='store_true')
parser.add_argument('--freeze_feats', action='store_true')
return parser.parse_args()
def test(args):
if args.dataset == 'kitti':
test_seqs = ['08','09','10']
test_dataset = KittiDataset(args.root, test_seqs, args.npoints, args.voxel_size, args.data_list, args.augment)
elif args.dataset == 'nuscenes':
test_seqs = ['test']
test_dataset = NuscenesDataset(args.root, test_seqs, args.npoints, args.voxel_size, args.data_list, args.augment)
else:
raise('Not implemented')
net = HRegNet(args).cuda()
net.load_state_dict(torch.load(args.pretrain_weights))
net.eval()
trans_error_list = []
rot_error_list = []
pred_T_list = []
delta_t_list = []
trans_thresh = 2.0
rot_thresh = 5.0
success_idx = []
with torch.no_grad():
for idx in range(test_dataset.__len__()):
start_t = datetime.datetime.now()
src_points, dst_points, gt_R, gt_t = test_dataset[idx]
src_points = src_points.unsqueeze(0).cuda()
dst_points = dst_points.unsqueeze(0).cuda()
gt_R = gt_R.numpy()
gt_t = gt_t.numpy()
ret_dict = net(src_points, dst_points)
end_t = datetime.datetime.now()
pred_R = ret_dict['rotation'][-1]
pred_t = ret_dict['translation'][-1]
pred_R = pred_R.squeeze().cpu().numpy()
pred_t = pred_t.squeeze().cpu().numpy()
rot_error, trans_error = calc_error_np(pred_R, pred_t, gt_R, gt_t)
pred_T = np.zeros((3,4))
gt_T = np.zeros((3,4))
pred_T[:3,:3] = pred_R
pred_T[:3,3] = pred_t
gt_T[:3,:3] = gt_R
gt_T[:3,3] = gt_t
pred_T = pred_T.flatten()
gt_T = gt_T.flatten()
pred_T_list.append(pred_T)
print('{:d}: trans: {:.4f} rot: {:.4f}'.format(idx, trans_error, rot_error))
trans_error_list.append(trans_error)
rot_error_list.append(rot_error)
if trans_error < trans_thresh and rot_error < rot_thresh:
success_idx.append(idx)
delta_t = (end_t - start_t).microseconds
delta_t_list.append(delta_t)
success_rate = len(success_idx)/test_dataset.__len__()
trans_error_array = np.array(trans_error_list)
rot_error_array = np.array(rot_error_list)
trans_mean = np.mean(trans_error_array[success_idx])
trans_std = np.std(trans_error_array[success_idx])
rot_mean = np.mean(rot_error_array[success_idx])
rot_std = np.std(rot_error_array[success_idx])
delta_t_array = np.array(delta_t_list)
delta_t_mean = np.mean(delta_t_array)
print('Translation mean: {:.4f}'.format(trans_mean))
print('Translation std: {:.4f}'.format(trans_std))
print('Rotation mean: {:.4f}'.format(rot_mean))
print('Rotation std: {:.4f}'.format(rot_std))
print('Runtime: {:.4f}'.format(delta_t_mean))
print('Success rate: {:.4f}'.format(success_rate))
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
pred_T_array = np.array(pred_T_list)
np.savetxt(os.path.join(args.save_dir, args.dataset+'_pred.txt'), pred_T_array)
np.savetxt(os.path.join(args.save_dir, args.dataset+'_trans_error.txt'), trans_error_list)
np.savetxt(os.path.join(args.save_dir, args.dataset+'_rot_error.txt'), rot_error_list)
f_summary = open(os.path.join(args.save_dir, args.dataset+'_summary.txt'), 'w')
f_summary.write('Dataset: '+args.dataset+'\n')
f_summary.write('Translation threshold: {:.2f}\n'.format(trans_thresh))
f_summary.write('Rotation threshold: {:.2f}\n'.format(rot_thresh))
f_summary.write('Translation mean: {:.4f}\n'.format(trans_mean))
f_summary.write('Translation std: {:.4f}\n'.format(trans_std))
f_summary.write('Rotation mean: {:.4f}\n'.format(rot_mean))
f_summary.write('Rotation std: {:.4f}\n'.format(rot_std))
f_summary.write('Runtime: {:.4f}\n'.format(delta_t_mean))
f_summary.write('Success rate: {:.4f}\n'.format(success_rate))
f_summary.close()
print('Saved results to ' + args.save_dir)
if __name__ == '__main__':
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
set_seed(args.seed)
test(args)