Skip to content

Latest commit

 

History

History
33 lines (21 loc) · 1.68 KB

README.md

File metadata and controls

33 lines (21 loc) · 1.68 KB

Autoencoders safari

Convolutional Autoencoders implementations using tensorflow and keras and the MNIST dataset.

In this safari you will see three implementations of autoencoders: a convolutional autoenconder, a convolutional variational autoencoder and a convolutional conditional variational autoencoder.

Convolutional Autoencoder (CA)

convolutional_autoencoder.ipynb: implementation of a convolutional autoencoder.

  • Both the encoder and the decoder have convolutional layers.
  • You will also find some plots of the latent space.

latent space

Convolutional Variational Autoencoder (CVA)

variational_convolutional_autoencoder.ipynb: implementation of a convolutional variational autoencoder.

  • We make use of the reparametrization trick.
  • Both the encoder and the decoder have convolutional layers.
  • You will also find some plots of the latent space.
  • At the end you will find how to generate samples using the trained encoder.

generated

Convolutional Conditional Variational Autoencoder (CCVA)

conditional_convolutional_variatinoal_autoencoder.ipynb: implementation of a convolutional conditional variational autoencoder.

  • We make use of the reparametrization trick.
  • Both the encoder and the decoder have convolutional layers.
  • At the end you will find how to generate samples using the trained encoder and custom labels to select the category of the samples.

generated