-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathdata_loader.py
51 lines (39 loc) · 1.48 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# -*- coding: utf-8 -*-
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets.folder import default_loader
from pathlib import Path
from feature_extraction import resnet_transform
import h5py
import numpy as np
class VideoData(Dataset):
def __init__(self, root, preprocessed=True, transform=resnet_transform, with_name=False):
self.root = root
self.preprocessed = preprocessed
self.transform = transform
self.with_name = with_name
self.video_list = list(self.root.iterdir())
def __len__(self):
return len(self.video_list)
def __getitem__(self, index):
if self.preprocessed:
image_path = self.video_list[index]
with h5py.File(image_path, 'r') as f:
if self.with_name:
return torch.Tensor(np.array(f['pool5'])), image_path.name[:-5]
else:
return torch.Tensor(np.array(f['pool5']))
else:
images = []
for img_path in Path(self.video_list[index]).glob('*.jpg'):
img = default_loader(img_path)
img_tensor = self.transform(img)
images.append(img_tensor)
return torch.stack(images), img_path.parent.name[4:]
def get_loader(root, mode):
if mode.lower() == 'train':
return DataLoader(VideoData(root), batch_size=1)
else:
return VideoData(root, with_name=True)
if __name__ == '__main__':
pass