-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path(a+b)(a-b)_eq_aa-bb.lean
122 lines (105 loc) · 4.38 KB
/
(a+b)(a-b)_eq_aa-bb.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
-- (a+b)(a-b)_eq_aa-bb.lean
-- (a+b)(a-b) = a^2-b^2
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 21-julio-2023
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si a y b son números reales, entonces
-- (a + b) * (a - b) = a^2 - b^2
-- ---------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Por la siguiente cadena de igualdades:
-- (a + b)(a - b)
-- = a(a - b) + b(a - b) [por la distributiva]
-- = (aa - ab) + b(a - b) [por la distributiva]
-- = (a^2 - ab) + b(a - b) [por def. de cuadrado]
-- = (a^2 - ab) + (ba - bb) [por la distributiva]
-- = (a^2 - ab) + (ba - b^2) [por def. de cuadrado]
-- = (a^2 + -(ab)) + (ba - b^2) [por def. de resta]
-- = a^2 + (-(ab) + (ba - b^2)) [por la asociativa]
-- = a^2 + (-(ab) + (ba + -b^2)) [por def. de resta]
-- = a^2 + ((-(ab) + ba) + -b^2) [por la asociativa]
-- = a^2 + ((-(ab) + ab) + -b^2) [por la conmutativa]
-- = a^2 + (0 + -b^2) [por def. de opuesto]
-- = (a^2 + 0) + -b^2 [por asociativa]
-- = a^2 + -b^2 [por def. de cero]
-- = a^2 - b^2 [por def. de resta]
-- Demostraciones con Lean4
-- ========================
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b : ℝ)
-- 1ª demostración
-- ===============
example : (a + b) * (a - b) = a^2 - b^2 :=
calc
(a + b) * (a - b)
= a * (a - b) + b * (a - b) := by rw [add_mul]
_ = (a * a - a * b) + b * (a - b) := by rw [mul_sub]
_ = (a^2 - a * b) + b * (a - b) := by rw [← pow_two]
_ = (a^2 - a * b) + (b * a - b * b) := by rw [mul_sub]
_ = (a^2 - a * b) + (b * a - b^2) := by rw [← pow_two]
_ = (a^2 + -(a * b)) + (b * a - b^2) := by ring
_ = a^2 + (-(a * b) + (b * a - b^2)) := by rw [add_assoc]
_ = a^2 + (-(a * b) + (b * a + -b^2)) := by ring
_ = a^2 + ((-(a * b) + b * a) + -b^2) := by rw [← add_assoc
(-(a * b)) (b * a) (-b^2)]
_ = a^2 + ((-(a * b) + a * b) + -b^2) := by rw [mul_comm]
_ = a^2 + (0 + -b^2) := by rw [neg_add_cancel (a * b)]
_ = (a^2 + 0) + -b^2 := by rw [← add_assoc]
_ = a^2 + -b^2 := by rw [add_zero]
_ = a^2 - b^2 := by linarith
-- 2ª demostración
-- ===============
example : (a + b) * (a - b) = a^2 - b^2 :=
calc
(a + b) * (a - b)
= a * (a - b) + b * (a - b) := by ring
_ = (a * a - a * b) + b * (a - b) := by ring
_ = (a^2 - a * b) + b * (a - b) := by ring
_ = (a^2 - a * b) + (b * a - b * b) := by ring
_ = (a^2 - a * b) + (b * a - b^2) := by ring
_ = (a^2 + -(a * b)) + (b * a - b^2) := by ring
_ = a^2 + (-(a * b) + (b * a - b^2)) := by ring
_ = a^2 + (-(a * b) + (b * a + -b^2)) := by ring
_ = a^2 + ((-(a * b) + b * a) + -b^2) := by ring
_ = a^2 + ((-(a * b) + a * b) + -b^2) := by ring
_ = a^2 + (0 + -b^2) := by ring
_ = (a^2 + 0) + -b^2 := by ring
_ = a^2 + -b^2 := by ring
_ = a^2 - b^2 := by ring
-- 3ª demostración
-- ===============
example : (a + b) * (a - b) = a^2 - b^2 :=
by ring
-- 4ª demostración
-- ===============
-- El lema anterior es
lemma aux : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
by ring
-- La demostración es
example : (a + b) * (a - b) = a^2 - b^2 :=
by
rw [sub_eq_add_neg]
rw [aux]
rw [mul_neg]
rw [add_assoc (a * a)]
rw [mul_comm b a]
rw [neg_add_cancel]
rw [add_zero]
rw [← pow_two]
rw [mul_neg]
rw [← pow_two]
rw [← sub_eq_add_neg]
-- Lemas usados
-- ============
-- #check (add_assoc : ∀ (a b c : ℝ), (a + b) + c = a + (b + c))
-- #check (add_zero : ∀ (a : ℝ), a + 0 = a)
-- #check (add_mul : ∀ (a b c : ℝ), (a + b) * c = a * c + b * c)
-- #check (mul_comm : ∀ (a b : ℝ), a * b = b * a)
-- #check (mul_neg : ∀ (a b : ℝ), a * -b = -(a * b))
-- #check (mul_sub : ∀ (a b c : ℝ), a * (b - c) = a * b - a * c)
-- #check (neg_add_cancel : ∀ (a : ℝ), -a + a = 0)
-- #check (pow_two : ∀ (a : ℝ), a ^ 2 = a * a)
-- #check (sub_eq_add_neg : ∀ (a b : ℝ), a - b = a + -b)