-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCancelativa_derecha.lean
107 lines (86 loc) · 2.68 KB
/
Cancelativa_derecha.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
-- Cancelativa_derecha.lean
-- Si R es un anillo y a, b, c ∈ R tales que a+b=c+b, entonces a=c
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 2-agosto-2023
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si R es un anillo y a, b, c ∈ R tales que
-- a + b = c + b
-- entonces
-- a = c
-- ----------------------------------------------------------------------
-- Demostraciones en lenguaje natural (LN)
-- =======================================
-- 1ª demostración en LN
-- =====================
-- Por la siguiente cadena de igualdades
-- a = a + 0 [por suma con cero]
-- = a + (b + -b) [por suma con opuesto]
-- = (a + b) + -b [por asociativa]
-- = (c + b) + -b [por hipótesis]
-- = c + (b + -b) [por asociativa]
-- = c + 0 [por suma con opuesto]
-- = c [por suma con cero]
-- 2ª demostración en LN
-- =====================
-- Por la siguiente cadena de igualdades
-- a = (a + b) + -b
-- = (c + b) + -b [por hipótesis]
-- = c
-- Demostraciones con Lean4
-- ========================
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable {a b c : R}
-- 1ª demostración con Lean4
-- =========================
example
(h : a + b = c + b)
: a = c :=
calc
a = a + 0 := by rw [add_zero]
_ = a + (b + -b) := by rw [add_neg_cancel]
_ = (a + b) + -b := by rw [add_assoc]
_ = (c + b) + -b := by rw [h]
_ = c + (b + -b) := by rw [← add_assoc]
_ = c + 0 := by rw [← add_neg_cancel]
_ = c := by rw [add_zero]
-- 2ª demostración con Lean4
-- =========================
example
(h : a + b = c + b)
: a = c :=
calc
a = (a + b) + -b := (add_neg_cancel_right a b).symm
_ = (c + b) + -b := by rw [h]
_ = c := add_neg_cancel_right c b
-- 3ª demostración con Lean4
-- =========================
example
(h : a + b = c + b)
: a = c :=
by
rw [← add_neg_cancel_right a b]
rw [h]
rw [add_neg_cancel_right]
-- 4ª demostración con Lean4
-- =========================
example
(h : a + b = c + b)
: a = c :=
by
rw [← add_neg_cancel_right a b, h, add_neg_cancel_right]
-- 5ª demostración con Lean4
-- =========================
example
(h : a + b = c + b)
: a = c :=
add_right_cancel h
-- Lemas usados
-- ============
-- #check (add_assoc a b c : (a + b) + c = a + (b + c))
-- #check (add_neg_cancel a : a + -a = 0)
-- #check (add_neg_cancel_right a b : (a + b) + -b = a)
-- #check (add_right_cancel : a + b = c + b → a = c)
-- #check (add_zero a : a + 0 = a)