-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCuadrado_igual_a_uno.lean
112 lines (96 loc) · 2.83 KB
/
Cuadrado_igual_a_uno.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
-- Cuadrado_igual_a_uno.lean
-- En ℝ, si x² = 1 entonces x = 1 ó x = -1.
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 19-enero-2024
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si
-- x^2 = 1
-- entonces
-- x = 1 ∨ x = -1
-- ----------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Usaremos los siguientes lemas
-- (∀ x ∈ ℝ)[x - x = 0] (L1)
-- (∀ x, y ∈ ℝ)[xy = 0 → x = 0 ∨ y = 0] (L2)
-- (∀ x, y ∈ ℝ)[x - y = 0 ↔ x = y] (L3)
-- (∀ x, y ∈ ℝ)[x + y = 0 → x = -y] (L4)
--
-- Se tiene que
-- (x - 1)(x + 1) = x² - 1
-- = 1 - 1 [por la hipótesis]
-- = 0 [por L1]
-- y, por el lema L2, se tiene que
-- x - 1 = 0 ∨ x + 1 = 0
-- Acabaremos la demostración por casos.
--
-- Primer caso:
-- x - 1 = 0 ⟹ x = 1 [por L3]
-- ⟹ x = 1 ∨ x = -1
--
-- Segundo caso:
-- x + 1 = 0 ⟹ x = -1 [por L4]
-- ⟹ x = 1 ∨ x = -1
-- Demostraciones con Lean4
-- ========================
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (x y : ℝ)
-- 1ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by
have h1 : (x - 1) * (x + 1) = 0 := by
calc (x - 1) * (x + 1) = x^2 - 1 := by ring
_ = 1 - 1 := by rw [h]
_ = 0 := sub_self 1
have h2 : x - 1 = 0 ∨ x + 1 = 0 := by
apply eq_zero_or_eq_zero_of_mul_eq_zero h1
rcases h2 with h3 | h4
. -- h3 : x - 1 = 0
left
-- ⊢ x = 1
exact sub_eq_zero.mp h3
. -- h4 : x + 1 = 0
right
-- ⊢ x = -1
exact eq_neg_of_add_eq_zero_left h4
-- 2ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by
have h1 : (x - 1) * (x + 1) = 0 := by nlinarith
have h2 : x - 1 = 0 ∨ x + 1 = 0 := by aesop
rcases h2 with h3 | h4
. -- h3 : x - 1 = 0
left
-- ⊢ x = 1
linarith
. -- h4 : x + 1 = 0
right
-- ⊢ x = -1
linarith
-- 3ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
sq_eq_one_iff.mp h
-- 3ª demostración
-- ===============
example
(h : x^2 = 1)
: x = 1 ∨ x = -1 :=
by aesop
-- Lemas usados
-- ============
-- #check (eq_neg_of_add_eq_zero_left : x + y = 0 → x = -y)
-- #check (eq_zero_or_eq_zero_of_mul_eq_zero : x * y = 0 → x = 0 ∨ y = 0)
-- #check (sq_eq_one_iff : x ^ 2 = 1 ↔ x = 1 ∨ x = -1)
-- #check (sub_eq_zero : x - y = 0 ↔ x = y)
-- #check (sub_self x : x - x = 0)