-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInverso_del_producto.lean
100 lines (79 loc) · 2.81 KB
/
Inverso_del_producto.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
-- Inverso_del_producto.lean
-- Si G es un grupo y a, b ∈ G, entonces (ab)⁻¹ = b⁻¹a⁻¹
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 14-mayo-2024
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si G es un grupo y a, b ∈ G, entonces
-- (a * b)⁻¹ = b⁻¹ * a⁻¹
-- ----------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Teniendo en cuenta la propiedad
-- (∀ a, b ∈ R)[ab = 1 → a⁻¹ = b]
-- basta demostrar que
-- (a·b)·(b⁻¹·a⁻¹) = 1.
-- que se demuestra mediante la siguiente cadena de igualdades
-- (a·b)·(b⁻¹·a⁻¹) = a·(b·(b⁻¹·a⁻¹)) [por la asociativa]
-- = a·((b·b⁻¹)·a⁻¹) [por la asociativa]
-- = a·(1·a⁻¹) [por producto con inverso]
-- = a·a⁻¹ [por producto con uno]
-- = 1 [por producto con inverso]
-- Demostraciones con Lean4
-- ========================
import Mathlib.Algebra.Group.Defs
variable {G : Type _} [Group G]
variable (a b : G)
lemma aux : (a * b) * (b⁻¹ * a⁻¹) = 1 :=
calc
(a * b) * (b⁻¹ * a⁻¹)
= a * (b * (b⁻¹ * a⁻¹)) := by rw [mul_assoc]
_ = a * ((b * b⁻¹) * a⁻¹) := by rw [mul_assoc]
_ = a * (1 * a⁻¹) := by rw [mul_inv_cancel]
_ = a * a⁻¹ := by rw [one_mul]
_ = 1 := by rw [mul_inv_cancel]
-- 1ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by
have h1 : (a * b) * (b⁻¹ * a⁻¹) = 1 :=
aux a b
show (a * b)⁻¹ = b⁻¹ * a⁻¹
exact inv_eq_of_mul_eq_one_right h1
-- 2ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by
have h1 : (a * b) * (b⁻¹ * a⁻¹) = 1 :=
aux a b
show (a * b)⁻¹ = b⁻¹ * a⁻¹
simp [h1]
-- 3ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by
have h1 : (a * b) * (b⁻¹ * a⁻¹) = 1 :=
aux a b
simp [h1]
-- 4ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by
apply inv_eq_of_mul_eq_one_right
rw [aux]
-- 5ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by exact mul_inv_rev a b
-- 6ª demostración
-- ===============
example : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
by simp
-- Lemas usados
-- ============
-- variable (c : G)
-- #check (inv_eq_of_mul_eq_one_right : a * b = 1 → a⁻¹ = b)
-- #check (mul_assoc a b c : (a * b) * c = a * (b * c))
-- #check (mul_inv_cancel a : a * a⁻¹ = 1)
-- #check (mul_inv_rev a b : (a * b)⁻¹ = b⁻¹ * a⁻¹)
-- #check (one_mul a : 1 * a = a)