forked from jvergar2/FEM-Notes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFEM-notes-refs.bib
executable file
·881 lines (815 loc) · 36.9 KB
/
FEM-notes-refs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
% This file was created with JabRef 2.8.1.
% Encoding: Cp1252
@ARTICLE{aberg1997,
author = {M. Aberg and P. Gudmundson},
title = {{T}he usage of standard finite element codes for computation of dispersion
relations in materials with periodic microstructure},
journal = {Journal of the Acoustical Society of America},
year = {1997},
volume = {102},
pages = {2007-2013},
abstract = {A method with which standard finite element programs can be used to
compute dispersion relations in periodic composites is proposed.
The method is applied to two composite microstructures: a two-phase
laminate and a fiber composite. The dispersion relations computed
for the laminate are compared with a known analytical solution and
the agreement is very good. The dispersion relations computed for
the fibrous composite are compared with an existing approximate model
and experimental results from the literature. The agreement between
the approximate model, the experiments, and the computations is very
good in the wave guide case and satisfactory for the wave reflect
case.},
keywords = {Abaqus, Finite Element, Periodic Materials, Real formulation, Homogenization},
owner = {Nico},
timestamp = {2012.04.04}
}
@BOOK{book:achenbach_waves,
title = {{W}ave {P}ropagation in {E}lastic {S}olids},
publisher = {North Holland Publishing Company},
year = {1973},
author = {J.D. Achenbach},
pages = {425},
keywords = {Elastodynamics, Wave Propagation, Continuum Mechanics},
owner = {nguarinz},
timestamp = {2011.11.28}
}
@BOOK{book:arfken,
title = {{M}athematical {M}ethods for {P}hysicists},
publisher = {Academic Press},
year = {2005},
author = {George B. Arfken and Hans J. Weber and Frank Harris},
pages = {1200},
edition = {6},
keywords = {Mathematical Physics, Theoretical Physics},
owner = {nguarinz},
review = {Mathematical Methods For Physicists provides aspiring engineers and
scientists with key insights into mathematical concepts that they
may need to understand as elementary researchers and students. The
authors have ensured that the first chapter covers all the vital
concepts needed by the readers to understand the latter chapters.
This seventh edition consists of mathematical relations and proofs
that are of great importance in the field of Physics},
timestamp = {2011.11.28}
}
@BOOK{book:BEMBanerjee,
title = {{T}he {B}oundary {E}lement {M}ethods in {E}ngineering},
publisher = {Mcgraw-Hill College},
year = {1994},
author = {Banerjee, Prasanta Kumar},
pages = {496},
edition = {2},
month = {1},
comment = {ISBN-10: 0077077695 ISBN-13: 978-0077077693},
keywords = {Boundary Element Method, BEM, IBEM, Computational Mechanics},
owner = {nguarinz},
review = {The last two decades have seen the emergence of a versatile and powerful
method of computational engineering mechanics, namely the boundary
element method. This book which incorporates the massive development
of the BEM technology that has occurred in the last decade, describes
the formulation of boundary element methods for almost all applications
of the method. For ease of use, a simple utilitarian and tutorial
approach is adopted in the initial chapters, introducing the basic
background needed to learn the method. Simple but detailed instructions
for its application to heat transfer and stress analyses are then
dealt with, before moving on to more complex formulations in the
later chapters. Fully supported by numerous case studies, this is
a comprehensive guide to the subject.},
timestamp = {2011.02.11}
}
@BOOK{book:bathe,
title = {{F}inite {E}lement {P}rocedures},
publisher = {Prentice Hall},
year = {1995},
author = {Klaus-Jurgen Bathe},
pages = {1037},
edition = {2},
month = {6},
comment = {ISBN-10: 0133014584 ISBN-13: 978-0133014587},
keywords = {Finite Element Method, FEM, Numerical Analysis, Computational Mechanics},
owner = {nguarin},
review = {For courses in finite element methods, finite element analysis taught
in departments of Civil, Mechanical, Aerospace, Agriculture, and
Mechanics departments. Course for which this book is appropriate
is usually taught to seniors or graduate students.Comprehensive --
this text explores the full range of finite element methods used
in engineering practice for actual applications in computer-aided
design. It provides not only an introduction to finite element methods
and the commonality in the various techniques, but explores state-of-the-art
methods as well -- with a focus on what are deemed to become "classical
techniques" -- procedures that will be standard and authoritative
for finite element analysis for years to come.},
timestamp = {2011.02.12}
}
@BOOK{book:brillouin2003,
title = {Wave propagation in periodic structures: electric filters and crystal
lattices},
publisher = {Courier Dover Publications},
year = {2003},
author = {Brillouin, L{\'e}on},
owner = {nguarin},
timestamp = {2014.04.03}
}
@BOOK{book:burden-analisis,
title = {{A}n\'alisis {N}um\'erico},
publisher = {Thomson Learning},
year = {2002},
author = {Richard Burden and Douglas Faires},
pages = {839},
edition = {7},
owner = {Nico},
timestamp = {2012.04.21}
}
@BOOK{book:burden2011,
title = {Numerical Analysis},
publisher = {Brooks/Cole},
year = {2011},
author = {Burden, R.L. and Faires, J.D.},
edition = {9},
institution = {ISBN 978-0-5387335-1-9},
owner = {nguarinz},
review = {This well-respected text gives an introduction to the theory and application
of modern numerical approximation techniques for students taking
a one- or two-semester course in numerical analysis. With an accessible
treatment that only requires a calculus prerequisite, Burden and
Faires explain how, why, and when approximation techniques can be
expected to work, and why, in some situations, they fail. A wealth
of examples and exercises develop students' intuition, and demonstrate
the subject's practical applications to important everyday problems
in math, computing, engineering, and physical science disciplines.
The first book of its kind built from the ground up to serve a diverse
undergraduate audience, three decades later Burden and Faires remains
the definitive introduction to a vital and practical subject.},
timestamp = {2012.11.27}
}
@INPROCEEDINGS{clough1999early,
author = {Clough, Ray W and Wilson, Edward L},
title = {Early finite element research at Berkeley},
booktitle = {Fifth US National Conference on Computational Mechanics},
year = {1999},
abstract = {ignificant finite element research was conducted at the University
of California at Berkeley during the period 1957 to 1970. The initial
research was a direct extension of classical methods of structural
analysis which previously had been restricted to one-dimensional
elements. The majority of the research conducted was motivated by
the need to solve practical problems in Aerospace, Mechanical and
Civil Engineering. During this short period the finite element method
was extended to the solution of linear and nonlinear problems associated
with creep, incremental construction or excavation, crack closing,
heat transfer, flow of water in porous media, soil consolidation,
dynamic response analysis and computer assisted learning of structural
analysis. During the last six years of this period the fields of
structural analysis and continuum mechanics were unified. The computer
programs developed during this early period at Berkeley were freely
distributed worldwide allowing practicing engineers to solve many
new problems in structural mechanics. Hence, the research was rapidly
transferred to the engineering profession. In many cases the research
was used professionally prior to the publication of a formal paper},
owner = {nicoguaro},
timestamp = {2015.01.15},
url = {http://www.ce.memphis.edu/7111/notes/class_notes/papers/fe-history.pdf}
}
@ARTICLE{courant43,
author = {Courant, Richard},
title = {Variational methods for the solution of problems of equilibrium and
vibrations},
journal = {Bull. Amer. Math. Soc},
year = {1943},
volume = {49},
pages = {1--23},
number = {1},
owner = {nicoguaro},
timestamp = {2015.01.15},
url = {http://mmph.narod.ru/doc/Courant.pdf}
}
@MANUAL{Calculix_manual,
title = {CalculiX CrunchiX Users Manual, version 2.7},
author = {Guido Dhondt},
year = {2014},
owner = {nguarin},
timestamp = {2015.06.11}
}
@ARTICLE{gander2012euler,
author = {Gander, Martin J and Wanner, Gerhard},
title = {From Euler, Ritz, and Galerkin to Modern Computing.},
journal = {SIAM Review},
year = {2012},
volume = {54},
pages = {627--666},
number = {4},
abstract = {The so-called Ritz--Galerkin method is one of the most fundamental
tools of modern computing. Its origins lie in Hilbert's direct
approach to the variational calculus of Euler--Lagrange and in the
thesis of Walther Ritz, who died 100 years ago at the age of 31 after
a long battle with tuberculosis. The thesis was submitted in 1902
in Göttingen, during a period of dramatic developments in physics.
Ritz tried to explain the phenomenon of Balmer series in spectroscopy
using eigenvalue problems of partial differential equations on rectangular
domains. While this physical model quickly turned out to be completely
obsolete, his mathematics later enabled him to solve difficult problems
in applied sciences. He thereby revolutionized the variational calculus
and became one of the fathers of modern computational mathematics.
We will see in this article that the path leading to modern computational
methods and theory involved a long struggle over three centuries
requiring the efforts of many great mathematicians.},
doi = {10.1137/100804036},
owner = {nicoguaro},
publisher = {Citeseer},
timestamp = {2015.01.15},
url = {http://www.unige.ch/~gander/Preprints/Ritz.pdf}
}
@MANUAL{gmsh_manual,
title = {Gmsh Reference Manual. Gmsh 2.9: A Three-Dimensional Finite Element
Mesh Generator With Built-in Pre-and Post-Processing Facilities},
author = {Geuzaine, C and Remacle, J},
month = {4},
year = {2015},
owner = {nguarin},
timestamp = {2015.06.11},
url = {http://geuz.org/gmsh/doc/texinfo/gmsh.pdf}
}
@ARTICLE{gmsh2009,
author = {Geuzaine, Christophe and Remacle, Jean-Fran{\c{c}}ois},
title = {Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing
facilities},
journal = {International Journal for Numerical Methods in Engineering},
year = {2009},
volume = {79},
pages = {1309--1331},
number = {11},
abstract = {Gmsh is an open-source 3-D finite element grid generator with a build-in
CAD engine and post-processor. Its design goal is to provide a fast,
light and user-friendly meshing tool with parametric input and advanced
visualization capabilities. This paper presents the overall philosophy,
the main design choices and some of the original algorithms implemented
in Gmsh.},
doi = {10.1002/nme.2579},
keywords = {computer-aided design; mesh generation; post-processing; finite element
method; open-source software},
owner = {nguarin},
publisher = {Wiley Online Library},
timestamp = {2015.06.11},
url = {http://geuz.org/gmsh/doc/preprints/gmsh_paper_preprint.pdf}
}
@BOOK{book:PDE_gockenbach,
title = {{P}artial {D}ifferential {E}quations: {A}nalytical and {N}umerical
{M}ethods},
publisher = {SIAM},
year = {2002},
author = {Mark S. Gockenbach},
owner = {nguarinz},
timestamp = {2012.03.27}
}
@MASTERSTHESIS{MSc_thesis-Guarin2012,
author = {Nicol\'as Guar\'in-Zapata},
title = {{S}imulaci\'on {N}um\'erica de {P}roblemas de {P}ropagaci\'on de
{O}ndas: {D}ominios {I}nfinitos y {S}emi-infinitos},
school = {Universidad EAFIT},
year = {2012},
abstract = {Espa\~nol:
Se presenta el desarrollo de dos herramientas computacionales para
la simulaci\'on de propagaci\'on de ondas en s\'olidos infinitos
y semi-infinitos. Ambas herramientas est\'an basadas en el M\'etodo
de los Elementos Finitos (FEM). En una primera parte se presenta
el acople de FEM con un M\'etodo de Elementos de Frontera (BEM) para
la soluci\'on del problema de esparcimiento en una heterogeneidad
en la parte superior de un semi-espacio. Se us\'o un criterio para
comprimir las matrices de BEM para disminuir los recursos computacinoales
requeridos y poder tratar problemas de mayor tama\~no.
En la segunda parte se describe la formulaci\'on e implementaci\'on
de una herramienta de an\'alisis para la propagaci\'on de ondas en
materiales con heterogeneidades peri\'odicas. \'Esta pretende servir
para caracterizar las propiedades globales del material cuando por
\'el se propaga una onda con cierta frecuencia dada. Para esto se
usaron diversos conceptos de la f\'isica del estado s\'olido y la
soluci\'on se fundamenta en el teorema de Bloch.
English:
We present the development of two computational tools for the simulation
wave propagation in infinite and semi-infinite solids. Both tools
are based on the Finite Element Method (FEM). In the first part it
is shown the couplinf of the FEM with a Boundary Element Method (BEM)
for the solution of the scattering problem due to heterogeneity in
the top of a half-space. We used a criterion for the compression
of the resulting matrices from the BEM to decrease the computational
costs and could handle bigger problems.
En the second part is is described the formulation and implementation
of an analysis tool for the wave propagation in periodic heterogeneous
materials. This is useful to caracterize the bulk properties when
it is a wave traveling through the material with a particular frequency.
For this we used diverse concepts from the solid state physics and
the solution is baes on the Bloch's theorem.},
keywords = {Wave propagation, Computational elastodynamics, Finite Element Method,
Boundary element method, Seismic waves, Periodic materials, Waves
in heterogeneous materials},
owner = {nguarinz},
timestamp = {2012.09.29}
}
@MANUAL{Abaqus_manual,
title = {ABAQUS Users Manual: Version 6.12},
author = {Hibbit, Karlsson \& Sorensen},
year = {2014},
journal = {Hibbit, Karlsson \& Sorensen},
owner = {nguarin},
timestamp = {2015.06.11}
}
@BOOKLET{abaqus_theory,
title = {ABAQUS theory manual, version 6.3},
author = {Hibbitt, HD and Karlsson, BI and Sorensen, P},
year = {2006},
journal = {Pawtucket, Rhode Island, USA},
owner = {nguarin},
timestamp = {2015.03.26}
}
@ARTICLE{hladky-hennion1992,
author = {Anne-Christine Hladky-Hennion and Jean-No\"el Decarpigny},
title = {{A}nalysis of the scattering of a plane acoustic wave by a doubly
periodic structure using the finite element method: {A}pplication
to {A}lberich anechoic coatings},
journal = {J. Acoust. Soc. Am},
year = {1991},
volume = {90},
pages = {3356-3367},
abstract = {The finite element approach has been previously used, with the help
of the ATILA code, to model the scattering of acoustic waves by single
periodic structures, such as compliant tube gratings [A. C. Hennion
et al., J. Acoust. Soc. Am. 87, 18611870 (1990)]. In this paper,
the same approach is extended to doubly periodic structures, such
as Alberich anechoic coatings. To do this, only the unit cell of
the periodic structure, including a small part of the surrounding
fluid domain, has to be meshed, due to the use of classical Bloch
type relations. Then, the effects of the remaining fluid domain are
accounted for by matching the pressure field in the finite element
mesh with simple plane wave expansions of the ingoing and outgoing
waves. After an outline of the method, the paper describes the results
obtained for the scattering of a plane wave by different periodic
structures. Internal losses are taken into account and the incident
plane wave impinges at normal or oblique incidence. Numerical results
obtained for Alberich anechoic coatings are first analyzed to check
the convergence and then compared to previous numerical results or
to experimental results, demonstrating that the finite element approach
is accurate and well suited to predict the behavior of these gratings.
Moreover, careful attention is devoted to the analysis of the inclusion
vibrations, to identify the origin of the resonance mechanisms.},
owner = {Nico},
timestamp = {2012.04.01}
}
@ARTICLE{hrennikoff1941solution,
author = {Hrennikoff, Alexander},
title = {Solution of problems of elasticity by the framework method},
journal = {Journal of applied mechanics},
year = {1941},
volume = {8},
pages = {169--175},
number = {4},
owner = {nicoguaro},
timestamp = {2015.01.15}
}
@TECHREPORT{algebraic_waves,
author = {Steven G. Johnson},
title = {{N}otes on the algebraic structure of wave equations},
institution = {Massachusetts Institute of Technology},
year = {2010},
owner = {nguarinz},
timestamp = {2012.03.28}
}
@BOOK{book:kittel1986,
title = {Introduction to solid state physics},
publisher = {Wiley New York},
year = {1986},
author = {Kittel, Charles and McEuen, Paul},
volume = {8},
owner = {nguarin},
timestamp = {2014.04.03}
}
@BOOK{book:kreyzsig_functional,
title = {{I}ntroductory {F}unctional {A}nalysis with {A}pplications},
publisher = {Wiley},
year = {1989},
author = {Erwin Kreyzsig},
pages = {704},
edition = {1},
keywords = {Functional Analysis},
owner = {nguarinz},
timestamp = {2011.11.28}
}
@BOOK{book:FEM_Matlab,
title = {The finite element method using MATLAB},
publisher = {CRC press},
year = {2000},
author = {Kwon, Young W and Bang, Hyochoong},
owner = {nicoguaro},
review = {The finite element method (FEM) has become one of the most important
and useful tools for scientists and engineers. This new book features
the use of MATLAB to present introductory and advanced finite element
theories and formulations. MATLAB is especially convenient to write
and understand finite element analysis programs because a MATLAB
program manipulates matrices and vectors with ease. The book is suitable
for introductory and advanced courses in the Finite Element Method,
as well as a reference for practicing engineers.},
timestamp = {2015.01.15}
}
@PHDTHESIS{langlet-thesis,
author = {Philippe Langlet},
title = {{A}nalyse de la {P}ropagation des {O}ndes {A}coustiques dans les
{M}ateriaux {P}eriodiques a l'aide de la {M}ethode des {E}lements
{F}inis},
school = {L'Universite de Valenciennes et du Hainaut-Cambresis},
year = {1993},
abstract = {La propagation d'une onde acoustique plane dans un matériau comportant
des cavités ou des inclusions rangées périodiquement est susceptible
de nombreuses applications, notamment dans les domaines de l'acoustique
sous-marine, du traitement des signaux et de l'acoustique médicale.
De tels matériaux son utilisés, par exemple, comme revêtements anéchoïques
de structures immergées, comme lignes à retar ou filtres acoustiques.
De même, les matériaux piézocomposites interviennent dans la conception
de nouveaux transducteurs ultrasonores.
Cette thèse concerne la modélisatin par la méthoe des éléments finis,
à l'aide du code ATILA, de matériaux élastiques ou piézoélectriques,
périodiques dans une, deux ou trois directions de l'espace. Les développements
théoriques spécifiques nécessaires à la description de ces matériaux
sont tout d'abord présentés. Une première validation est réalisée
à travers quelques résultats obtenus pour matériaux périodiques,
pour lesquels des formulations analytiques simples existent. Ensuite,
la technique développée est appliquée à l'étude de la propagation
des ondes dans les matériaux périodiques poreux ou résultats éléments
finis obtenus sont comparés avec succès aux résultats de modèles
antérieurs semi-analytiques et empiriques ou à des résultats expérimentaux.
Les propiétés homogénéisées de matériaux poreux sont ensuite recherchées
sur des solides anisotropes, cette procédure d'homogéneisation est
menée en étudiant les fréquences de résonance de plaques perforées
périodiquement. Enfin, l'ensemble des résultats conduit à proposer
une extension de la méthode pur les problèmes couplés fluide-solide
et pour l'étude des ondes évanescentes dans les bandes interdites.},
keywords = {Acoustic wave propagation, Periodic Materials, Finite Element Method,
Effective Properties, Porous Materials, Piezocomposites, Waveguides},
owner = {Nico},
timestamp = {2012.03.19}
}
@ARTICLE{leissa2005historical,
author = {Leissa, Arthur W},
title = {The historical bases of the Rayleigh and Ritz methods},
journal = {Journal of Sound and Vibration},
year = {2005},
volume = {287},
pages = {961--978},
number = {4},
abstract = {Rayleigh's classical book Theory of Sound was first published in 1877.
In it are many examples of calculating fundamental natural frequencies
of free vibration of continuum systems (strings, bars, beams, membranes,
plates) by assuming the mode shape, and setting the maximum values
of potential and kinetic energy in a cycle of motion equal to each
other. This procedure is well known as Rayleigh's Method. In 1908,
Ritz laid out his famous method for determining frequencies and mode
shapes, choosing multiple admissible displacement functions, and
minimizing a functional involving both potential and kinetic energies.
He then demonstrated it in detail in 1909 for the completely free
square plate. In 1911, Rayleigh wrote a paper congratulating Ritz
on his work, but stating that he himself had used Ritz's method in
many places in his book and in another publication. Subsequently,
hundreds of research articles and many books have appeared which
use the method, some calling it the Ritz method and others the
RayleighRitz method. The present article examines the method in
detail, as Ritz presented it, and as Rayleigh claimed to have used
it. It concludes that, although Rayleigh did solve a few problems
which involved minimization of a frequency, these solutions were
not by the straightforward, direct method presented by Ritz and used
subsequently by others. Therefore, Rayleigh's name should not be
attached to the method.},
owner = {nicoguaro},
publisher = {Elsevier},
timestamp = {2015.01.15}
}
@ARTICLE{meek96,
author = {Meek, JL},
title = {A brief history of the beginning of the finite element method},
journal = {International journal for numerical methods in engineering},
year = {1996},
volume = {39},
pages = {3761--3774},
abstract = {This paper presents summaries of the works of several authors associated
with the invention of the analysis technique now referred to as the
finite element method. It stresses the notion of first development
from which subsequent ideas evolved and gives what is believed to
be an accurate record of the historical sequence of published papers
in the international literature.},
doi = {10.1002/(SICI)1097-0207(19961130)39:22<3761::AID-NME22>3.0.CO;2-5},
keywords = {history; finite elements; structural mechanics},
owner = {nicoguaro},
timestamp = {2015.01.15},
url = {http://people.sc.fsu.edu/~jpeterson/history_fem.pdf}
}
@MANUAL{FEMM_manual,
title = {Finite Element Method Magnetics: Version 4.2 User's Manual},
author = {David Meeker},
year = {2010},
owner = {nguarin},
timestamp = {2015.06.11},
url = {http://www.femm.info/Archives/doc/manual42.pdf}
}
@BOOK{algebra_lineal-poole,
title = {\'{A}lgebra lineal: una introducci\'on moderna},
publisher = {Cengage Learning Editores},
year = {2007},
author = {David Poole},
pages = {712},
edition = {2},
note = {ISBN 9706865950},
owner = {Nico},
timestamp = {2012.04.05}
}
@BOOK{book:FEM_SEM,
title = {{I}ntroduction to {F}inite and {S}pectral {E}lement {M}ethods using
{M}atlab ({R})},
publisher = {Chapman \& Hall\&CRC},
year = {2005},
author = {C. Pozrikidis},
pages = {653},
edition = {1},
keywords = {Finite Element Method, Spectral Element Method, Matlab},
owner = {nguarinz},
review = {[This book] approaches the matter from the more practical side.
It gives a broad, digestible introduction into what everybody wishing
to write an FE code needs to know.
This is a hands-on book in that
it presupposes the reader to work the examples in MATLAB, for which
a primer is provided. The actual work is greatly facilitated by the
possibility to freely download software
-Monatshefte fur Mathematik,
2007},
timestamp = {2011.11.28}
}
@BOOK{book:numerical_recipes,
title = {Numerical recipes 3rd edition: The art of scientific computing},
publisher = {Cambridge university press},
year = {2007},
author = {Press, William H},
owner = {nguarin},
timestamp = {2015.03.26}
}
@BOOK{book:reddy_intro_FEM,
title = {{A}n {I}ntroduction to the {F}inite {E}lement {M}ethod},
publisher = {McGraw-Hill},
year = {2005},
author = {J.N. Reddy},
pages = {912},
edition = {3},
keywords = {Finite Element Method, Numerical Methods},
owner = {nguarinz},
review = {J.N. Reddy's, An Introduction to the Finite Element Method, third
edition is an update of one of the most popular FEM textbooks available.
The book retains its strong conceptual approach, clearly examining
the mathematical underpinnings of FEM, and providing a general approach
of engineering application areas.
Known for its detailed, carefully selected example problems and extensive
selection of homework problems, the author has comprehensively covered
a wide range of engineering areas making the book approriate for
all engineering majors, and underscores the wide range of use FEM
has in the professional world.
A supplementary text Web site located at http://www.mhhe.com/reddy3e
contains password-protected solutions to end-of-chapter problems,
general textbook information, supplementary chapters on the FEM1D
and FEM2D computer programs, and more!},
timestamp = {2011.11.28}
}
@BOOK{book:reddy_functional_analysis,
title = {{A}pplied {F}unctional {A}nalysis and {V}ariational {M}ethods in
{E}ngineering},
publisher = {Krieger Publishing},
year = {1991},
author = {J.N. Reddy},
pages = {546},
edition = {1},
keywords = {Variational Method, Functional Analysis, Analytical Mechanics},
owner = {nguarinz},
timestamp = {2011.11.28}
}
@ARTICLE{ritz1909,
author = {Ritz, Walter},
title = {{\"U}ber eine neue Methode zur L{\"o}sung gewisser Variationsprobleme
der mathematischen Physik.},
journal = {Journal f{\"u}r die reine und angewandte Mathematik},
year = {1909},
volume = {135},
pages = {1--61},
abstract = {Die Randwertaufgaben der mathematischen Physik erfordern durchweg
die Darstellung endlicher, stetiger Funktionen in vorgeschriebenen
endlichen Bereichen. Nur ausnahmsweise gelingt hier eine Entwicklung
nach Potenzreihen , und noch seltener ist dieselbe im ganzen Bereich
numerisch brauchbar . Endlich scheitert , selbst in F\''allen , wo
die Entwicklung prinzipiell möglich w\''are , ihre Berechnung h\''aufig
an dem Umstand , dass sie die Lösung unendlich vieler linearen Gleichungen
mit unendlich vielen bekannten erfordert. Sehr viel besser eignen
sich Entwicklungen nach Polynomen, Fouriersche Reihen usw . f\''ur
die Darstellung einer reellen Funktion w(x , y,..) in einem gegebenen
Bereich, da hier f\''ur die Konvergenz im ganzen Bereich nur Eigenschaften
der Stetigkeit usw . gefordert werden, die bei den Randwertaufgaben
meist erf\''ullt sind . Bei numerisch gegebenem l\''u bietet die
Bestimmung der Koeffizienten eines Polynoms #w_n= a_0 + a_1 x + \cdots
$ von gegebenem Grade $n$ derart, dass w als Approximation von $w$
gelten könne, keinerlei Schwierigkeit, und es kann die Genauigkeit
bei gen\''ugend grossem n unbegrenzt gesteigert werden. Ist aber
w als Integral einer Differentialgleichung , unter gewissen Nebenbedingungen,
definiert , so gelingt die Berechnung der Koeffizienten a, zun\''achst
nur in dem sehr speziellen Fall, wo eine Integration durch rasch
konvergente Potenzreihen möglich ist Es erhebt sich die Forderung,
die angen\''aherte Darstellung des Integrals im ganzen vorgeschriebenen
Bereich durch ein Polynom von gegebenem Grade n buch in diesem Falle
allgemein durchzuf\''uhren, in der Art, dass bei wachsendem n die
Genauigkeit unbegrenzt wachsen, so dass schliesslich eine Entwicklung
des Integrals Polynomen resultiert.},
owner = {nicoguaro},
timestamp = {2015.01.15}
}
@BOOK{book:sepulveda_fismat,
title = {{F}ísica {M}atemática},
publisher = {Editorial Universidad de Antioquia},
year = {2009},
author = {Alonso Sep\'ulveda},
pages = {406},
edition = {1},
keywords = {Mathematical Physics, Theoretical Physics},
owner = {nguarinz},
timestamp = {2011.11.28}
}
@BOOK{shames1997elastic,
title = {Elastic and inelastic stress analysis},
publisher = {CRC Press},
year = {1997},
author = {Shames, Irving H},
owner = {eafit},
timestamp = {2015.08.11}
}
@ARTICLE{sukumar_bloch-2009,
author = {N. Sukumar and J. E. Pask},
title = {{C}lassical and enriched {F}inite element formulations for {B}loch-periodic
boundary conditions},
journal = {International Journal of Numerical Methods in Engineering},
year = {2009},
volume = {77},
pages = {11211138},
number = {8},
month = {2},
abstract = {In this paper, classical and enriched Finite element formulations
to impose Bloch-periodic boundary conditions are proposed. Bloch-periodic
boundary conditions arise in the description of wave-like phenomena
in periodic media. We consider the quantum-mechanical problem in
a crystalline solid, and derive the weak formulation and matrix equations
for the SchrÄodinger and Poisson equations in a parallelepiped unit
cell under Bloch-periodic and periodic boundary conditions, respectively.
For such second-order problems, these conditions consist of value-
and derivative-periodic parts. The value-periodic part is enforced
as an essential boundary condition by construction of a value-periodic
basis, whereas the derivative-periodic part is enforced as a natural
boundary condition in the weak formulation. We show that the resulting
matrix equations can be obtained by suitably specifying the connectivity
of element matrices in the assembly of the global matrices or by
modifying the Neumann matrices via row and column operations. The
implementation and accuracy of the new formulation is demonstrated
via numerical examples for the three-dimensional Poisson and Schrodinger
equations using classical and enriched (partition-of-unity) higher-order
Funite elements.},
owner = {nguarinz},
timestamp = {2012.03.29}
}
@MANUAL{feap_manual,
title = {FEAP--A Finite Element Analysis Program, Version 8.4 User Manual},
author = {Taylor, RL},
year = {2013},
journal = {University of California at Berkeley, Berkeley, CA},
owner = {nguarin},
timestamp = {2015.06.11}
}
@MISC{wiki:calculus_of_variations,
author = {Wikipedia},
title = {Calculus of variations --- Wikipedia{,} The Free Encyclopedia},
year = {2015},
note = {[Online; accessed 30-May-2015]},
owner = {nguarin},
timestamp = {2015.05.30},
url = {http://en.wikipedia.org/w/index.php?title=Calculus_of_variations&oldid=663148595}
}
@MISC{wiki:constitutive_relation,
author = {Wikipedia},
title = {Constitutive equation --- Wikipedia{,} The Free Encyclopedia},
year = {2015},
note = {[Online; accessed 2-July-2015]},
owner = {nguarin},
timestamp = {2015.07.02},
url = {https://en.wikipedia.org/w/index.php?title=Constitutive_equation&oldid=668139312}
}
@MISC{wiki:variational_principle,
author = {Wikipedia},
title = {Variational principle --- Wikipedia{,} The Free Encyclopedia},
year = {2015},
note = {[Online; accessed 30-May-2015]},
owner = {nguarin},
timestamp = {2015.05.30},
url = {http://en.wikipedia.org/w/index.php?title=Variational_principle&oldid=646823082}
}
@BOOK{book:zienkiewicz_FEM2,
title = {{T}he {F}inite {E}lement {M}ethod for {S}olid and {S}tructural {M}echanics},
publisher = {Butterworth-Heinemann},
year = {2005},
author = {O.C. Zienkiewicz and R.L. Taylor},
volume = {2},
pages = {736},
edition = {6},
keywords = {Finite Element Method, Structural Mechanics, Continuum Mechanics,
Numerical Methods},
owner = {nguarinz},
review = {This is the key text and reference for engineers, researchers and
senior students dealing with the analysis and modelling of structures
- from large civil engineering projects such as dams, to aircraft
structures, through to small engineered components. Covering small
and large deformation behaviour of solids and structures, it is an
essential book for engineers and mathematicians. The new edition
is a complete solids and structures text and reference in its own
right and forms part of the world-renowned Finite Element Method
series by Zienkiewicz and Taylor.
New material in this edition includes separate coverage of solid continua
and structural theories of rods, plates and shells; extended coverage
of plasticity (isotropic and anisotropic); node-to-surface and 'mortar'
method treatments; problems involving solids and rigid and pseudo-rigid
bodies; and multi-scale modelling.
* Dedicated coverage of solid and structural mechanics by world-renowned
authors, Zienkiewicz and Taylor * New material including separate
coverage of solid continua and structural theories of rods, plates
and shells; extended coverage for small and finite deformation; elastic
and inelastic material constitution; contact modelling; problems
involving solids, rigid and discrete elements; and multi-scale modelling
* Accompanied by online downloadable software},
timestamp = {2011.11.28}
}
@BOOK{book:zienkiewicz_FEM1,
title = {{T}he {F}inite {E}lement {M}ethod: {I}ts {B}asis and {F}undamentals},
publisher = {Butterworth-Heinemann},
year = {2005},
author = {O.C. Zienkiewicz and R.L. Taylor and J.Z. Zhu},
volume = {1},
pages = {752},
edition = {6},
keywords = {Finite Element Method,Numerical Methods},
owner = {nguarinz},
review = {The Finite Element Method: Its Basis and Fundamentals offers a complete
introduction to the basis of the finite element method, covering
fundamental theory and worked examples in the detail required for
readers to apply the knowledge to their own engineering problems
and understand more advanced applications.
This edition sees a significant rearrangement of the book's content
to enable clearer development of the finite element method, with
major new chapters and sections added to cover:
Weak forms
Variational forms
Multi-dimensional field problems
Automatic mesh generation
Plate bending and shells
Developments in meshless techniques
Focusing on the core knowledge, mathematical and analytical tools
needed for successful application, The Finite Element Method: Its
Basis and Fundamentals is the authoritative resource of choice for
graduate level students, researchers and professional engineers involved
in finite element-based engineering analysis.
A proven keystone reference in the library of any engineer needing
to understand and apply the finite element method in design and development.
Founded by an influential pioneer in the field and updated in this
seventh edition by an author team incorporating academic authority
and industrial simulation experience. Features reworked and reordered
contents for clearer development of the theory, plus new chapters
and sections on mesh generation, plate bending, shells, weak forms
and variational forms.},
timestamp = {2011.11.28}
}
@comment{jabref-meta: groupsversion:3;}
@comment{jabref-meta: groupstree:
0 AllEntriesGroup:;
1 ExplicitGroup:FEM\;0\;Abaqus_manual\;Calculix_manual\;FEMM_manual\;M
Sc_thesis-Guarin2012\;abaqus_theory\;aberg1997\;book:FEM_Matlab\;book:
FEM_SEM\;book:bathe\;book:reddy_functional_analysis\;book:reddy_intro_
FEM\;book:zienkiewicz_FEM1\;book:zienkiewicz_FEM2\;clough1999early\;co
urant43\;feap_manual\;gmsh2009\;hladky-hennion1992\;langlet-thesis\;le
issa2005historical\;sukumar_bloch-2009\;wiki:constitutive_relation\;;
2 ExplicitGroup:Historical development of FEM\;0\;clough1999early\;cou
rant43\;gander2012euler\;hrennikoff1941solution\;leissa2005historical\
;meek96\;ritz1909\;;
2 ExplicitGroup:Mesh\;0\;FEMM_manual\;gmsh2009\;gmsh_manual\;;
1 ExplicitGroup:Mathematics\;0\;algebra_lineal-poole\;algebraic_waves\
;book:PDE_gockenbach\;book:arfken\;book:burden-analisis\;book:burden20
11\;book:reddy_intro_FEM\;clough1999early\;hrennikoff1941solution\;sha
mes1997elastic\;wiki:calculus_of_variations\;wiki:variational_principl
e\;;
2 ExplicitGroup:Mathematical Physics\;0\;book:arfken\;book:reddy_funct
ional_analysis\;book:sepulveda_fismat\;;
2 ExplicitGroup:Calculus of Variations\;0\;book:reddy_functional_analy
sis\;courant43\;gander2012euler\;hrennikoff1941solution\;leissa2005his
torical\;meek96\;ritz1909\;wiki:calculus_of_variations\;wiki:variation
al_principle\;;
2 ExplicitGroup:Numerical Analysis\;0\;book:burden-analisis\;book:burd
en2011\;book:numerical_recipes\;;
2 ExplicitGroup:Functional analysis\;0\;book:kreyzsig_functional\;book
:reddy_functional_analysis\;;
2 ExplicitGroup:PDE\;0\;book:PDE_gockenbach\;sukumar_bloch-2009\;;
1 ExplicitGroup:Physics\;0\;algebraic_waves\;book:achenbach_waves\;boo
k:brillouin2003\;book:kittel1986\;wiki:constitutive_relation\;;
1 ExplicitGroup:Periodic materials\;0\;MSc_thesis-Guarin2012\;aberg199
7\;algebraic_waves\;book:brillouin2003\;hladky-hennion1992\;langlet-th
esis\;sukumar_bloch-2009\;;
1 ExplicitGroup:Waves\;0\;MSc_thesis-Guarin2012\;algebraic_waves\;book
:achenbach_waves\;book:brillouin2003\;;
}