-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextractor.py
executable file
·277 lines (254 loc) · 12.5 KB
/
extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
'''Extractor
Example:
python extractor.py example/F01_B01_S01_R01_N.pkl result/result.csv \
--vowel IY1,IH1,EH1,AO1,AH1,AA1,AE1,UH1,UW1 \
--artic tr,td,tt,ja,ul,ll \
--acous f0,f1,f2,f3 \
--n_points 5 \
--ref example/reference_formants.xlsx \
--skip_nans False
Notation:
- tr --> TR, td --> TD, tt --> TT, ja --> JAW, ul --> UL, ll --> LL
2021-01-05 first created
'''
# Basic
import os
import re
import wave
import tempfile
import argparse
import numpy as np
import pandas as pd
from glob import glob
from tqdm.auto import tqdm
from pprint import pprint
import parselmouth
from parselmouth.praat import call
# Custom
from utils import load_pkl, load_dictionary, check_dictionary, \
parse_ieee_filename, check_ref_formant_file, \
init_acous_params, init_acous_feats, check_nan
def check_arguments(args, verbose=False):
'''Check arguments & Update args'''
# DATAFILE, OUTFILE
if os.path.isdir(args.DATAFILE):
assert len(glob(os.path.join(args.DATAFILE, '*.pkl'))) > 0, f'No pickle files were found at {args.DATAFILE}'
else:
assert os.path.exists(args.DATAFILE), f'{args.DATAFILE} (file or directory) does not exist'
# Check --vowel
args.vowel = ''.join(args.vowel.split())
assert len(args.vowel.split(',')) > 0, f'No vowels are provided: {args.vowel}'
args.vowel = args.vowel.split(',')
# Check --artic
args.artic = ''.join(args.artic.split())
assert len(args.artic.split(',')) > 0, f'No artic is provided: {args.artic}'
args.artic = args.artic.split(',')
# Check --acous
args.acous = ''.join(args.acous.split())
assert len(args.acous.split(',')) > 0, f'No acous is provided: {args.acous}'
args.acous = args.acous.split(',')
args.acous = [val.lower() if val[1]=='0' else val.upper() for val in args.acous] # update label names
# Check --n_points
assert args.n_points > 0, 'n_points should be larger than 0'
assert args.n_points < 10, f'time points are too many... {args.n_points}. Maybe reduce it down <10?'
# Check --ref
if args.ref is not None:
assert os.path.exists(args.ref), f'Reference formant file ({args.ref}) does not exist'
check_ref_formant_file(args.ref)
else:
args.ref = None
if verbose:
pprint(vars(args))
return args
def extract(datafile, acous, artic, artic_dict, ref_file, vowels, n_points,
field_names, channel_names, audio_channel, header_names,
result_file=None, skip_nans=False, write_log=True):
'''Extract articulatory and acoustic features for a single file
Parameters
----------
datafile: datafile; eg. F01_B01_S01_R01_N.pkl
acous: list of acoustic features
artic: list of articulatory features
artic_dict: articulatory name conversion dictionary; eg. 'tr' --> 'TR'
ref_file: formant reference file
vowels: list of vowels to extract
n_points: number of time points to extract given a vowel
field_names: name of the MVIEW fields; eg. 'SIGNAL', ...
channel_names: EMA sensor names; eg. TR, TB, ...
audio_channel: audio channel name; eg. AUDIO
header_names: table header for the output result file
result_file: (optional) output file name; eg. result/F01.csv
skip_nans: if False (default), it will throw an error when NaNs are found
if True, it will ignore NaNs, but NaNs will removed from the result file
write_log: if True (default), it will write a log file,
but log file will be written only if errors are found
'''
# Initialize log data
logs = []
# Load data dictionary
D = load_dictionary(datafile, field_names, channel_names, audio_channel)
ema_sr = D['TR']['SRATE']
# Load audio
sig, sr = D['AUDIO']['SIGNAL'], D['AUDIO']['SRATE']
sig_int16 = (sig * (2 ** 15 - 1)).astype("<h")
with tempfile.NamedTemporaryFile() as f:
# Write audio temporarily
s = wave.open(f, mode='wb')
s.setnchannels(1)
s.setsampwidth(2)
s.setframerate(sr)
s.writeframes(sig_int16.tobytes())
s.close()
f.flush()
soundObj = parselmouth.Sound(f.name)
# Initialization
fid, spkr, block, sent, rep, rate = parse_ieee_filename(datafile) # ieee
header = header_names.copy()
header += [col.upper() if col != 'f0' else col for col in acous]
header += [artic_dict[col]+c for col in artic for c in ['x','z']] # TR --> TRx, TRz
params = init_acous_params()
ref = None
if ref_file is not None:
ref = pd.read_excel(ref_file)
# Get labels
_phones, _p_times = D['AUDIO']['PHONES']['LABEL'], D['AUDIO']['PHONES']['OFFS']
_words, _w_times = D['AUDIO']['WORDS']['LABEL'], D['AUDIO']['WORDS']['OFFS']
p_idx = [i for i, p in enumerate(_phones) if p in vowels]
if len(p_idx) == 0:
logs += [','.join([fid, '_', '_', '_', f'No phones {vowels} were matching'])]
return None, logs
phones, p_times = [_phones[i] for i in p_idx], _p_times[p_idx,:]
w_idx = [i for i, (beg, end) in enumerate(_w_times)
if len(np.where((p_times.mean(axis=1)<end) * (p_times.mean(axis=1)>beg))[0])]
assert len(w_idx) > 0, f'No words were matching given phones {vowels}'
words, w_times = [_words[i] for i in w_idx], _w_times[w_idx,:]
# --- Iterate over phones (vowels)
# pad before/after the extracted part to prevent nan from formant tracking
margin = params['window_length'] * 2 # sec
df = pd.DataFrame(columns=header, index=range(len(phones * n_points)))
irow = 0
for i, p_label, p_time, w_label, w_time in zip(p_idx, phones, p_times, words, w_times):
# Retrieve meta info
if ref_file is not None:
params['F1'] = float(ref.loc[(ref.Speaker==spkr)&(ref.Vowel==p_label), 'F1ref'].values)
params['F2'] = float(ref.loc[(ref.Speaker==spkr)&(ref.Vowel==p_label), 'F2ref'].values)
params['F3'] = float(ref.loc[(ref.Speaker==spkr)&(ref.Vowel==p_label), 'F3ref'].values)
params['F4'] = float(ref.loc[(ref.Speaker==spkr)&(ref.Vowel==p_label), 'F4ref'].values)
prevowel = _phones[i-1] if (i-1) > 0 else 'BEG'
postvowel = _phones[i+1] if (i+1) >= len(_phones) else 'END'
duration = p_time[1] - p_time[0]
percents = np.linspace(0, 1, n_points) # time --> percent point
ticks = [float(p_time[0] + duration * t) for t in percents]
fmtTrackObj, pitchObj, error_flag = init_acous_feats(soundObj, p_time[0]-margin, p_time[1]+margin,
params=params, acous=acous, do_resample=True)
# --- Iterate over time points
if error_flag is None:
for j, (perc, tick) in enumerate(zip(percents, ticks)):
# Extract acoustic features
acous_data = []
if 'f0' in header:
acous_data += [call(pitchObj, 'Get value at time...', tick)]
if 'F1' in header:
acous_data += [call(fmtTrackObj, 'Get value at time...', 1, tick, 'hertz', 'Linear')]
if 'F2' in header:
acous_data += [call(fmtTrackObj, 'Get value at time...', 2, tick, 'hertz', 'Linear')]
if 'F3' in header:
acous_data += [call(fmtTrackObj, 'Get value at time...', 3, tick, 'hertz', 'Linear')]
if 'F4' in header:
acous_data += [call(fmtTrackObj, 'Get value at time...', 4, tick, 'hertz', 'Linear')]
# Extract articulatory features
artic_data = []
sample_idx = round(tick * ema_sr)
xz_idx = [0,2]
for arc in [artic_dict[c] for c in artic]:
x, z = D[arc]['SIGNAL'][sample_idx, xz_idx]
artic_data += [x, z]
# Update
row_data = [fid, spkr, block, rate, sent, rep, w_label,
prevowel, p_label, postvowel, duration, perc, tick]
row_data += acous_data
row_data += artic_data
df.loc[irow] = row_data
irow += 1
else:
logs += [','.join([fid, str(p_time[0]), p_label, w_label, error_flag])]
if result_file is not None:
df.to_csv(result_file, index=False)
if args.write_log:
log_file = re.sub('csv', 'log', result_file)
with open(log_file, 'wt') as f:
for line in logs:
f.write(line+'\n')
if not skip_nans:
# Throw error on NaNs
assert len(check_nan(df)) == 0, f'NaNs were found ({len(check_nan(df))} rows)'
else:
# Drop NaNs silently & reset index
df.dropna(inplace=True)
df.reset_index(drop=True, inplace=True)
return df, logs
def run(args):
'''Run the extractor'''
# Set meta information
field_names = ['NAME', 'SRATE', 'SIGNAL', 'SOURCE', 'SENTENCE', 'WORDS', 'PHONES', 'LABELS']
channel_names = ['TR', 'TB', 'TT','UL', 'LL', 'JAW']
audio_channel = 'AUDIO'
header = ['FileID', 'Speaker', 'Block', 'Rate', 'Sent', 'Rep', 'Word',
'PreVowel', 'Vowel', 'PostVowel', 'Duration', 'TimeAt', 'TimeSec']
artic_dict = {'tr':'TR', 'tb':'TB', 'tt':'TT', 'ja':'JAW', 'ul':'UL', 'll':'LL'}
# Extract features
if not os.path.isdir(args.DATAFILE):
# --- for single file
fid, _, _, _, _, _, = parse_ieee_filename(args.DATAFILE)
result_file = os.path.join('result', f'{fid}.csv')
df = extract(args.DATAFILE, args.acous, args.artic, artic_dict, args.ref, args.vowel, args.n_points,
field_names, channel_names, audio_channel, header,
result_file=result_file, skip_nans=args.skip_nans, write_log=args.write_log)
else:
# --- for multiple files
dfs = []
logs = []
pkl_files = sorted(glob(os.path.join(args.DATAFILE, '*.pkl')))
basename = os.path.basename(args.OUTFILE)
for pkl_file in tqdm(pkl_files, desc=f'Result: {basename}', ascii=True, total=len(pkl_files)):
df, log = extract(pkl_file, args.acous, args.artic, artic_dict, args.ref, args.vowel, args.n_points,
field_names, channel_names, audio_channel, header,
result_file=None, skip_nans=args.skip_nans, write_log=args.write_log)
logs += [log]
if df is not None:
dfs += [df]
# Save
pd.concat(dfs).to_csv(args.OUTFILE, index=False)
if args.write_log & (len(sum(logs, [])) > 0):
log_file = re.sub('csv', 'log', args.OUTFILE)
with open(log_file, 'wt') as f:
for line in sum(logs, []):
f.write(line+'\n')
if __name__ == '__main__':
# Parse arguments
parser = argparse.ArgumentParser(description='Extract articulatory and acoustic features from the EMA data',
epilog='See https://github.com/jaekookang/Articulatory-Data-Extractor')
parser.add_argument('DATAFILE', type=str,
help='Specify filename or directory')
parser.add_argument('OUTFILE', type=str,
help='Specify output file name (eg. result.csv)')
parser.add_argument('--vowel', type=str, required=True,
help='Specify vowels (eg. IY1,IH1,EH1,AO1,AH1,AA1,AE1,UH1,UW1')
parser.add_argument('--artic', type=str, required=True,
help='Specify articulatory features (eg. tr,td,tt,ja,ul,ll)')
parser.add_argument('--acous', type=str, required=True,
help='Specify acoustic features (eg. f0,f1,f2,f3 or f0,f1,f2)')
parser.add_argument('--n_points', type=int, required=True,
help='Specify the number of data points to extract given a vowel (<10)')
parser.add_argument('--ref', type=str, required=False, default=None,
help='Specify a formant reference file for accurate tracking')
parser.add_argument('--skip_nans', type=bool, required=False, default=False,
help='If False (default), it will throw errors on NaNs')
parser.add_argument('--write_log', type=bool, required=False, default=False,
help='if True (default: False), it will write a log file {OUTFILE}.log ' + \
'only if there are errors')
args = parser.parse_args()
args = check_arguments(args, verbose=True)
# Run
run(args)
print('Done')