-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
234 lines (197 loc) · 9.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import json
import os
from os import path
import subprocess
import copy
import datetime
f_config = open('./train_config.json', 'r')
config_data = json.load(f_config)
f_config.close()
train_id = config_data["train_exp_id"]
image_base_dir = config_data["images_base_dir"]
result_dir = config_data["result_dir"]
miv_json_path = config_data["path_of_MIV_json_file"]
input_frame_rate = config_data["input_frame_rate"]
initial_n_iters = config_data["initial_n_iters"]
transfer_n_iters = config_data["transfer_learning_n_iters"]
frame_start = config_data["frame_start"]
frame_end = config_data["frame_end"]
cuda_device_nums = config_data["cuda_device_nums"]
use_transforms_json = config_data["use_transforms_json"]
path_of_transforms_json = config_data["path_of_transforms_json"]
ingp_home_dir = '.'
view_start_idx = 0 # will be modified below. don't touch.
num_of_views = 0 # will be modified below. don't touch.
os.system(f'mkdir {result_dir}')
os.system(f'mkdir {result_dir}/train_{train_id}')
# write time info in log file
start_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "w") as log_file:
log_file.write("DO NOT DELETE THIS LOG FILE !!\n\n")
log_file.write(f"[{start_time}] - Start!!\n")
# write basic settings in log file
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write("\n")
for key, value in config_data.items():
log_file.write(f"{key}: {value}\n")
# error handling
if frame_start <= 0:
print('frame_start should be 1 or bigger')
exit()
if frame_start > frame_end:
print('frame_start should be smaller than frame_end')
exit()
# Step1. if needed, transform yuv file into pngs
if path.exists(f'{image_base_dir}/images'):
views_list = os.listdir(f'{image_base_dir}/images')
views_list.sort()
if '_v0' in views_list[0] or 'v0' in views_list[0]:
view_start_idx = 0
elif '_v1' in views_list[0] or 'v1' in views_list[0]:
view_start_idx = 1
num_of_views = len(views_list)
# write view information on log file
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"view_start_idx: {view_start_idx}\n")
log_file.write(f"num_of_views: {num_of_views}\n")
log_file.write("\n")
else:
yuv_dir = config_data["path_of_dir_containing_only_texture_yuv"]
input_video_size = config_data["input_video_width_height"]
input_frame_rate = config_data["input_frame_rate"]
video_file_list = os.listdir(yuv_dir)
video_file_list = [x for x in video_file_list if x[-3:]=='yuv' and 'depth' not in x]
num_of_views = len(video_file_list)
start_with_zero_file= [x for x in video_file_list if 'v0_' in x or 'v00_' in x]
if len(start_with_zero_file) > 0:
view_start_idx = 0
else:
view_start_idx = 1
# write view information on log file
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"view_start_idx: {view_start_idx}\n")
log_file.write(f"num_of_views: {num_of_views}\n")
log_file.write("\n")
os.system(f'sudo mkdir {image_base_dir}')
os.system(f'sudo mkdir {image_base_dir}/images')
# write time information on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Start converting yuv to png!!\n\n")
for V in range(view_start_idx, num_of_views + view_start_idx):
video_file = [x for x in video_file_list if f'v{V}_' in x or f'v0{V}_' in x]
video_file = video_file[0]
os.system(f'sudo mkdir {image_base_dir}/images/v{str(V).zfill(2)}; \
sudo ffmpeg -pixel_format yuv420p10le \
-video_size {input_video_size} -framerate {input_frame_rate} \
-i {yuv_dir}/{video_file} \
-f image2 -pix_fmt rgba \
{image_base_dir}/images/v{str(V).zfill(2)}/image-v{str(V).zfill(2)}-f%3d.png')
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Success converting yuv to png. Saved at {image_base_dir}/images/\n\n")
# Step2. camera parameter conversion
os.system(f'mkdir {result_dir}/train_{train_id}/frames')
for F in range(frame_start, frame_end + 1):
os.system(f'mkdir {result_dir}/train_{train_id}/frames/frame{F}')
if use_transforms_json == "true":
os.system(f'cp {path_of_transforms_json} {result_dir}/train_{train_id}/transforms.json')
else:
subprocess.call(f'python ./camorph/main.py 0 {miv_json_path} {result_dir}/train_{train_id}/transforms.json \
{num_of_views} 0', shell=True)
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Sucess converting camera parameter (OMAF->NeRF) {result_dir}/train_{train_id}/transforms.json\n\n")
f_tr_json = open(f'{result_dir}/train_{train_id}/transforms.json', 'r')
orig_tr_json = json.load(f_tr_json)
tr_json = orig_tr_json
f_tr_json.close()
tr_json["aabb_scale"] = 128
tr_json["scale"] = 0.1
# translation_val_sample = \
# ( abs(tr_json["frames"][0]["transform_matrix"][0][3]) \
# + abs(tr_json["frames"][0]["transform_matrix"][1][3]) \
# + abs(tr_json["frames"][1]["transform_matrix"][0][3]) \
# + abs(tr_json["frames"][1]["transform_matrix"][1][3]) ) / 4
# if translation_val_sample > 15:
# tr_json["scale"] = 0.01
f_tr_write = open(f'{result_dir}/train_{train_id}/transforms.json', 'w+')
json.dump(tr_json, f_tr_write, ensure_ascii=False, indent='\t')
f_tr_write.close()
f_fp_read = open(f'{result_dir}/train_{train_id}/transforms.json', 'r')
orig = json.load(f_fp_read)
f_fp_read.close()
for F in range(frame_start, frame_end + 1):
new = orig
orig_frames = orig["frames"]
for j, data_frame in enumerate(orig_frames):
new["frames"][j]["file_path"] = \
f"{image_base_dir}/images/v{str(j+view_start_idx).zfill(2)}/image-v{str(j+view_start_idx).zfill(2)}-f{str(F).zfill(3)}.png"
f_fp_write = open(f"{result_dir}/train_{train_id}/frames/frame{F}/transforms_train.json", 'w+')
json.dump(new, f_fp_write, ensure_ascii=False, indent='\t')
f_fp_write.close()
# Step3: excluding test view on training step
if config_data["exclude_specific_views"] == "true" or config_data["exclude_specific_views"] == "True":
exclude_views = config_data["views_to_exclude"]
train_views = [i for i in range(view_start_idx, view_start_idx+num_of_views+1) if i not in exclude_views]
for F in range(frame_start, frame_end + 1):
f_orig= open(f'{result_dir}/train_{train_id}/frames/frame{F}/transforms_train.json', 'r')
orig = json.load(f_orig)
f_orig.close()
train = copy.deepcopy(orig)
orig_frames = orig["frames"]
for i in reversed(range(len(orig_frames))):
if i + view_start_idx not in train_views:
del(train["frames"][i])
f_train = open(f"{result_dir}/train_{train_id}/frames/frame{F}/transforms_train.json", "w+")
json.dump(train, f_train, ensure_ascii=False, indent='\t')
f_train.close()
# Step4: instant-ngp
# first frame
print(f"Training Frame{frame_start} ...")
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Start training frame{frame_start}. Now accumulated iter: 0\n\n")
accumulated_iter = initial_n_iters
os.system(f"mkdir {result_dir}/train_{train_id}/models")
os.system(f"mkdir {result_dir}/train_{train_id}/models/frame{frame_start}")
os.system(f"CUDA_VISIBLE_DEVICES={cuda_device_nums[0]} \
python {ingp_home_dir}/scripts/run.py \
--network {ingp_home_dir}/configs/nerf/dyngp_initial.json \
--scene {result_dir}/train_{train_id}/frames/frame{frame_start}/transforms_train.json \
--n_steps {accumulated_iter} \
--save_snapshot {result_dir}/train_{train_id}/models/frame{frame_start}/frame{frame_start}.msgpack \
> {result_dir}/train_{train_id}/frames/frame{frame_start}/frame{frame_start}_log.txt ")
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - End training frame{frame_start}. Model saved at {result_dir}/train_{train_id}/models/frame{frame_start}/frame{frame_start}.msgpack\n\n")
# fine-tuning
for F in range(frame_start + 1, frame_end + 1):
print(f"Training Frame{F} ...")
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Start training frame{F}. Now accumulated iter: {accumulated_iter}\n\n")
accumulated_iter += transfer_n_iters
os.system(f"mkdir {result_dir}/train_{train_id}/models/frame{F}")
os.system(f"CUDA_VISIBLE_DEVICES={cuda_device_nums[0]} \
python {ingp_home_dir}/scripts/run.py \
--network {ingp_home_dir}/configs/nerf/dyngp_transfer.json \
--scene {result_dir}/train_{train_id}/frames/frame{F}/transforms_train.json \
--load_snapshot {result_dir}/train_{train_id}/models/frame{F-1}/frame{F-1}.msgpack \
--n_steps {accumulated_iter} \
--save_snapshot {result_dir}/train_{train_id}/models/frame{F}/frame{F}.msgpack \
> {result_dir}/train_{train_id}/frames/frame{F}/frame{F}_log.txt ")
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - End training frame{F}. Model saved at {result_dir}/train_{train_id}/models/frame{F}/frame{F}.msgpack\n\n")
# write time info on log file
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
with open(f"{result_dir}/train_{train_id}/log.txt", "a") as log_file:
log_file.write(f"[{time}] - Success on training frame{frame_start} to frame{frame_end}\n\n")
log_file.write(f"You can now render 6DoF video by running render.py\n\n")