-
Notifications
You must be signed in to change notification settings - Fork 2
/
ofc_a3c.py
executable file
·288 lines (216 loc) · 8.47 KB
/
ofc_a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
import threading
import time
import tensorflow as tf
import numpy as np
import os
from collections import Counter
from rlofc.ofc_environment import OFCEnv
from rlofc.gamestate_encoder import SelfRankBinaryEncoder
os.environ["KERAS_BACKEND"] = "tensorflow"
from keras import backend as K
from keras.layers import Dense, Input
from keras.models import Model
# Experiment params
ACTIONS = 3
NUM_CONCURRENT = 1
MAX_GAMES = 2000000
GAMES_PER_UPDATE = 20
GAMES_PER_PRINT = 50
CHECKPOINT_INTERVAL = 100000
SUMMARY_INTERVAL = 200000
MAX_REWARD_LOG = 100000
LEARNING_RATE = 0.0001
GAMMA = 0.99
# Path params
EXPERIMENT_NAME = "rlofc"
SUMMARY_SAVE_PATH = "summaries/" + EXPERIMENT_NAME
CHECKPOINT_DIR = "checkpoints/"
CHECKPOINT_SAVE_PATH = CHECKPOINT_DIR + EXPERIMENT_NAME + ".ckpt"
RESTORE = True
LOG_PATH = "logs/running_reward"
encoder = SelfRankBinaryEncoder()
INPUT_DIM = encoder.dim
# Shared global parameters
T = 0
TMAX = 80000000
t_max = 32
def get_networks():
"""Get policy and value networks."""
with tf.device("/cpu:0"):
# Placeholder for a tensor that will always be fed
state = tf.placeholder("float", [None, INPUT_DIM])
inputs = Input(shape=[INPUT_DIM])
shared = Dense(500, activation="relu")(inputs)
shared = Dense(500, activation="relu")(shared)
shared = Dense(500, activation="relu")(shared)
action_probs = Dense(name="p",
output_dim=ACTIONS,
activation="softmax")(shared)
state_value = Dense(name="v",
output_dim=1,
activation="linear")(shared)
policy_model = Model(input=inputs, output=action_probs)
value_model = Model(input=inputs, output=state_value)
p_params = policy_model.trainable_weights
v_params = value_model.trainable_weights
policy_network = policy_model(state)
value_network = value_model(state)
return state, policy_network, value_network, p_params, v_params
def build_tf_graph():
"""Create global shared policy and value networks. Define loss function."""
state, policy_network, value_network, p_params, v_params = \
get_networks()
# Shared global optimizer
optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
# tf magic. "Op for applying remote gradients" (???)
R_t = tf.placeholder("float", [None])
a_t = tf.placeholder("float", [None, ACTIONS])
log_prob = tf.log(tf.reduce_sum(tf.mul(policy_network, a_t),
reduction_indices=1))
p_loss = -log_prob * (R_t - value_network)
v_loss = tf.reduce_mean(tf.square(R_t - value_network))
total_loss = p_loss + (0.5 * v_loss)
minimize = optimizer.minimize(total_loss)
return state, a_t, R_t, minimize, policy_network, value_network
def build_summary_ops():
"""Tensorflow magic episode summary operations.
I have no idea what this does or how this works."""
episode_reward = tf.Variable(0.)
tf.scalar_summary("Episode Reward", episode_reward)
r_summary_placeholder = tf.placeholder("float")
update_ep_reward = episode_reward.assign(r_summary_placeholder)
ep_avg_v = tf.Variable(0.)
tf.scalar_summary("Episode Value", ep_avg_v)
val_summary_placeholder = tf.placeholder("float")
update_ep_val = ep_avg_v.assign(val_summary_placeholder)
summary_op = tf.merge_all_summaries()
return (r_summary_placeholder, update_ep_reward, val_summary_placeholder,
update_ep_val, summary_op)
def a3c_thread(session, thread_index, tf_graph, summary_ops, env, saver):
global TMAX, T
f = open(LOG_PATH + str(thread_index), "a")
# Don't all start asynchronously criticising at once...
time.sleep(2 * thread_index)
# Unpack input objects
s, a, R, minimize, policy_network, value_network = tf_graph
r_summary_placeholder, update_ep_reward, val_summary_placeholder, \
update_ep_val, summary_op = summary_ops
ep_rewards = []
running_reward = None
# Observe and encode game state
env.reset()
observation = env.observe()
_, _, _, _, terminal, r_t = observation
s_t = env.encoder.encode(*observation)
elapsed_games = 0
s_batch = []
a_batch = []
R_batch = []
while T < TMAX and elapsed_games < MAX_GAMES:
# Per-batch counters
s_game = []
a_game = []
t = 0
t_start = 0
while not terminal:
# Forward the policy network and sample an action
probs = session.run(policy_network, feed_dict={s: [s_t]})[0]
action_idx = np.random.choice(ACTIONS, 1, p=probs)
a_t = np.zeros([ACTIONS])
a_t[action_idx] = 1
# Append state and action to batch
s_game.append(s_t)
a_game.append(a_t)
# Take the action and observe
env.step(action_idx)
observation = env.observe()
_, _, _, _, terminal, r_t1 = observation
s_t1 = env.encoder.encode(*observation)
# Increment everything
t += 1
s_t = s_t1
R_game = discount_rewards(r_t1, (t - t_start))
running_reward = r_t1 if running_reward is None \
else running_reward * 0.999 + r_t1 * 0.001
elapsed_games += 1
T += 1
R_batch.append(R_game)
s_batch.append(s_game)
a_batch.append(a_game)
ep_rewards.append(r_t1)
if elapsed_games % GAMES_PER_PRINT == 0:
# print "P, ", np.max(probs), "V ", session.run(value_network,
# feed_dict={s: [s_t]})[0][0], "R ", running_reward
print str(thread_index) + '\t' + str(T) + '\t' + \
str(running_reward) + '\t' + \
str(np.mean(ep_rewards))
for i in range(GAMES_PER_PRINT):
f.write(str(thread_index) + ',' +
str(ep_rewards[-i]) + '\n')
if len(ep_rewards) > MAX_REWARD_LOG:
ep_rewards = ep_rewards[GAMES_PER_PRINT:]
if elapsed_games % GAMES_PER_UPDATE == 0:
# Minimize globally!
session.run(minimize, feed_dict={R: np.hstack(R_batch),
a: np.vstack(a_batch),
s: np.vstack(s_batch)})
s_batch = []
a_batch = []
R_batch = []
# Reset and reobserve!
env.reset()
observation = env.observe()
_, _, _, _, terminal, r_t = observation
s_t = env.encoder.encode(*observation)
if T % CHECKPOINT_INTERVAL == 0:
saver.save(session, CHECKPOINT_SAVE_PATH, global_step=T)
def discount_rewards(R, t):
"""Decay rewards back in time."""
R_d = np.zeros(t)
R_t = R
for i in reversed(range(t)):
R_t = GAMMA * R_t
R_d[i] = R_t
return R_d
def train(session, tf_graph, saver):
"""Set up threaded environments."""
envs = [OFCEnv([], SelfRankBinaryEncoder) for i in range(NUM_CONCURRENT)]
summary_ops = build_summary_ops()
summary_op = summary_ops[-1]
session.run(tf.initialize_all_variables())
ckpt = tf.train.get_checkpoint_state(CHECKPOINT_DIR)
if RESTORE and ckpt and ckpt.model_checkpoint_path:
print 'restoring...'
saver.restore(session, ckpt.model_checkpoint_path)
writer = tf.train.SummaryWriter(SUMMARY_SAVE_PATH, session.graph)
a3c_threads = [threading.Thread(target=a3c_thread,
args=(session,
thread_id,
tf_graph,
summary_ops,
envs[thread_id],
saver))
for thread_id in range(NUM_CONCURRENT)]
for t in a3c_threads:
t.start()
# Show the agents training and write summary statistics
last_summary_time = 0
while True:
time.sleep(5)
now = time.time()
if now - last_summary_time > SUMMARY_INTERVAL:
summary_str = session.run(summary_op)
writer.add_summary(summary_str, float(T))
last_summary_time = now
for t in a3c_threads:
t.join()
def main(_):
g = tf.Graph()
with g.as_default(), tf.Session() as session:
graph_ops = build_tf_graph()
saver = tf.train.Saver()
K.set_session(session)
train(session, graph_ops, saver)
if __name__ == "__main__":
tf.app.run()