-
Notifications
You must be signed in to change notification settings - Fork 7
/
20140702-PMAA.tex
442 lines (392 loc) · 17.3 KB
/
20140702-PMAA.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
% \documentclass[handout]{beamer}
\documentclass{beamer}
\mode<presentation>
{
\usetheme{ANLBlue}
% \usefonttheme[onlymath]{serif}
% \usetheme{Singapore}
% \usetheme{Warsaw}
% \usetheme{Malmoe}
% \useinnertheme{circles}
% \useoutertheme{infolines}
% \useinnertheme{rounded}
\setbeamercovered{transparent=20}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{alltt,listings,multirow,ulem,siunitx}
\usepackage[absolute,overlay]{textpos}
\TPGrid{1}{1}
\usepackage{pdfpages}
\usepackage{ulem}
\usepackage{multimedia}
\usepackage{multicol}
\newcommand\hmmax{0}
\newcommand\bmmax{0}
\usepackage{bm}
\usepackage{comment}
\usepackage{subcaption}
% font definitions, try \usepackage{ae} instead of the following
% three lines if you don't like this look
\usepackage{mathptmx}
\usepackage[scaled=.90]{helvet}
% \usepackage{courier}
\usepackage[T1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{shadows,arrows,shapes.misc,shapes.arrows,shapes.multipart,arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri,calc,shadows,chains,matrix}
\newcommand\vvec{\bm v}
\newcommand\bvec{\bm b}
\newcommand\bxk{\bvec_0 \times \kappa_0 \cdot \nabla}
\newcommand\delp{\nabla_\perp}
% \usepackage{pgfpages}
% \pgfpagesuselayout{4 on 1}[a4paper,landscape,border shrink=5mm]
\usepackage{JedMacros}
\newcommand{\timeR}{t_{\mathrm{R}}}
\newcommand{\timeW}{t_{\mathrm{W}}}
\newcommand{\mglevel}{\ensuremath{\ell}}
\newcommand{\mglevelcp}{\ensuremath{\mglevel_{\mathrm{cp}}}}
\newcommand{\mglevelcoarse}{\ensuremath{\mglevel_{\mathrm{coarse}}}}
\newcommand{\mglevelfine}{\ensuremath{\mglevel_{\mathrm{fine}}}}
%solution and residual
\newcommand{\vx}{\ensuremath{x}}
\newcommand{\vc}{\ensuremath{\hat{x}}}
\newcommand{\vr}{\ensuremath{r}}
\newcommand{\vb}{\ensuremath{b}}
%operators
\newcommand{\vA}{\ensuremath{A}}
\newcommand{\vP}{\ensuremath{I_H^h}}
\newcommand{\vS}{\ensuremath{S}}
\newcommand{\vR}{\ensuremath{I_h^H}}
\newcommand{\vI}{\ensuremath{\hat I_h^H}}
\newcommand{\vV}{\ensuremath{\mathbf{V}}}
\newcommand{\vF}{\ensuremath{F}}
\newcommand{\vtau}{\ensuremath{\mathbf{\tau}}}
\title{Algorithmic reuse for non-smooth problems in heterogeneous media}
\author{{\bf Jed Brown} \texttt{[email protected]} (ANL and CU Boulder) \\
\quad Mark Adams (LBL), Matt Knepley (UChicago)
}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
% \institute
% {
% Mathematics and Computer Science Division \\ Argonne National Laboratory
% }
\date{PMAA, Lugano, 2014-07-02 \\[1em]
This talk: \url{http://59A2.org/files/20140702-PMAA.pdf}}
% This is only inserted into the PDF information catalog. Can be left
% out.
\subject{Talks}
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
% {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% \end{frame}
% }
% \AtBeginSection[]
% {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection]
% \end{frame}
% }
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
% \beamerdefaultoverlayspecification{<+->}
\begin{document}
\lstset{language=C}
\normalem
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Plan: ruthlessly eliminate communication}
\begin{block}{Why?}
\begin{itemize}
\item Local recovery despite global coupling
\item Tolerance for high-frequency load imbalance
\begin{itemize}
\item From irregular computation or hardware error correction
\end{itemize}
\item More scope for dynamic load balance
\end{itemize}
\end{block}
\begin{block}{Requirements}
\begin{itemize}
\item Must retain optimal convergence with good constants
\item Flexible, robust, and debuggable
\end{itemize}
\end{block}
\end{frame}
\section{$\tau$-adaptivity and multigrid compression}
\begin{frame}[fragile]{Multigrid Preliminaries}
\begin{figure}
\centering
\begin{tikzpicture}
[>=stealth,
every node/.style={inner sep=2pt},
restrict/.style={thick},
prolong/.style={thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=4mm},
]
\begin{scope}\scriptsize
\newcommand\mgdx{4.0em}
\newcommand\mgdy{4.0em}
\newcommand\mgl[1]{(pow(2,#1+1))}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\newcommand\mghx{0.9*\mgdx}
\newcommand\mghy{0.9*\mgdy}
\draw[shift=\mgloc{0*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{3},
ystep=\mghy/\mgl{3}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{1*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{2},
ystep=\mghy/\mgl{2}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{2*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{1},
ystep=\mghy/\mgl{1}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\draw[shift=\mgloc{3*\mgdx}{0}{0}{0},
xstep=\mghy/\mgl{0},
ystep=\mghy/\mgl{0}]
(-0.5*\mghy,-0.5*\mghy) grid (0.5*\mghy,0.5*\mghy);
\end{scope}
\end{tikzpicture}
\label{fig:levels}
\end{figure}
\textbf{Multigrid} is an $O(n)$ method for solving algebraic problems by defining a hierarchy of scale.
A multigrid method is constructed from:
\begin{enumerate}
\item a series of discretizations
\begin{itemize}
\item coarser approximations of the original problem
\item constructed algebraically or geometrically
\end{itemize}
\item intergrid transfer operators
\begin{itemize}
\item residual restriction $I_h^H$ (fine to coarse)
\item state restriction $\hat I_h^H$ (fine to coarse)
\item partial state interpolation $I_H^h$ (coarse to fine, `prolongation')
\item state reconstruction $\mathbb{I}_H^h$ (coarse to fine)
\end{itemize}
\item Smoothers ($S$)
\begin{itemize}
\item correct the high frequency error components
\item Richardson, Jacobi, Gauss-Seidel, etc.
\item Gauss-Seidel-Newton or optimization methods
\end{itemize}
\end{enumerate}
\end{frame}
\input{slides/MG/TauFAS.tex}
\begin{frame}{$\tau$ corrections}
\begin{figure}
\centering
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{figures/MG/ElasticityCompressTrim}
%\caption{Initial solution.}\label{fig:elast-initial}
\end{subfigure} ~
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{figures/MG/ElasticityCompressShearTrim}
%\caption{Increment.}\label{fig:elast-increment}
\end{subfigure} ~
\begin{subfigure}[b]{0.28\textwidth}
\includegraphics[width=\textwidth]{figures/MG/ElasticityCompressErrorNoTauTrim}
%\caption{Smoothed error without $\tau$.}\label{fig:elast-error-notau}
\end{subfigure} ~
\begin{subfigure}[b]{0.28\textwidth}
\includegraphics[width=\textwidth]{figures/MG/ElasticityCompressErrorTauTrim}
%\caption{Smoothed error with $\tau$.}\label{fig:elast-error-tau}
\end{subfigure}
\begin{itemize}
\item Plane strain elasticity, $E=1000,\nu=0.4$ inclusions in $E=1,\nu=0.2$ material, coarsen by $3^2$.
\item Solve initial problem everywhere and compute $\tau_h^H = A^H \hat I_h^H u^h - I_h^H A^h u^h$
\item Change boundary conditions and solve FAS coarse problem
\begin{equation*}
N^H \acute u^H = \underbrace{I_h^H \acute f^h}_{\acute f^H} + \underbrace{N^H \hat I_h^H \tilde u^h - I_h^H N^h \tilde u^h}_{\tau_h^H}
\end{equation*}
\item Prolong, post-smooth, compute error $e^h = \acute u^h - (N^h)^{-1} \acute f^h$
\item<2> \alert{Coarse grid \emph{with $\tau$} is nearly $10\times$ better accuracy}
\end{itemize}
% \caption{Plane strain elasticity, $E=1000,\nu=0.4$ inclusions in $E=1,\nu=0.2$ material. 2-level multigrid with coarsening factor of $3^2$.
% Panes (a) and (b) show the deformed body colored by strain.
% The initial problem of compression by 0.2 from the right is solved (a) and $\tau = A^H \hat I_h^H u^h - I_h^H A^h u^h$ is computed.
% Then a shear increment of 0.1 in the $y$ direction is added to the boundary condition, and the coarse-level problem is resolved, interpolated to the fine-grid, and a post-smoother is applied.
% When the coarse problem is solved without a $\tau$ correction (c), the displacement error is nearly $10\times$ larger than when $\tau$ is included in the right hand side of the coarse problem (d).
% }\label{fig:tau-valid}
% ./ex49 -mx 90 -my 90 -da_refine_x 3 -da_refine_y 3 -elas_ksp_converged_reason -elas_ksp_rtol 1e-8 -no_view -c_str 3 -sponge_E0 1 -sponge_E1 1e3 -sponge_nu0 0.4 -sponge_nu1 0.2 -sponge_t 3 -sponge_w 9 -u_o vtk:ex49_sol.vts -use_nonsymbc -elas_pc_type mg -elas_pc_mg_levels 2 -elas_pc_mg_galerkin -tau1_o vtk:ex49_tau1.vts -tau2_o vtk:ex49_tau2.vts -taudiff_o vtk:ex49_taudiff.vts -u2_o vtk:ex49_sol2.vts -u2c_o vtk:ex49_sol2c.vts -u3_o vtk:ex49_sol3.vts -u4_o vtk:ex49_sol4.vts -u2err_o vtk:ex49_sol2err.vts -u3err_o vtk:ex49_sol3err.vts -u3c_o vtk:ex49_sol3c.vts -tau3_o vtk:ex49_tau3.vts
\end{figure}
\end{frame}
\begin{frame}{$\tau$ adaptivity: an idea for heterogeneous media}
\begin{itemize}
\item Applications
\begin{itemize}
\item Geo: reservoir engineering, lithosphere dynamics (subduction, rupture/fault dynamics)
\item carbon fiber, biological tissues, fracture
\item Conventional adaptivity fails
\end{itemize}
\item Traditional adaptive methods fail
\begin{itemize}
\item Solutions are not ``smooth''
\item Cannot build accurate coarse space without scale separation
\end{itemize}
\item $\tau$ adaptivity
\begin{itemize}
\item Fine-grid work needed everywhere at first
\item Then $\tau$ becomes accurate in nearly-linear regions
\item Only visit fine grids in ``interesting'' places: active nonlinearity, drastic change of solution
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Comparison to nonlinear domain decomposition}
\begin{itemize}
\item ASPIN (Additive Schwarz preconditioned inexact Newton) \\
\begin{itemize}
\item Cai and Keyes (2003)
\item More local iterations in strongly nonlinear regions
\item Each nonlinear iteration only propagates information locally
\item Many real nonlinearities are activated by long-range forces
\begin{itemize}
\item locking in granular media (gravel, granola)
\item binding in steel fittings, crack propagation
\end{itemize}
\item Two-stage algorithm has different load balancing
\begin{itemize}
\item Nonlinear subdomain solves
\item Global linear solve
\end{itemize}
\end{itemize}
\item $\tau$ adaptivity
\begin{itemize}
\item Minimum effort to communicate long-range information
\item Nonlinearity sees effects as accurate as with global fine-grid feedback
\item Fine-grid work always proportional to ``interesting'' changes
\end{itemize}
\end{itemize}
\end{frame}
\input{slides/MG/LowComm.tex}
\input{slides/MG/SmoothingNonlinearProblems.tex}
\begin{frame}[fragile]{Multiscale compression and recovery using $\tau$ form}
\begin{tikzpicture}
[scale=0.7,every node/.style={scale=0.7},
>=stealth,
restrict/.style={thick,double},
prolong/.style={thick,double},
cprestrict/.style={green!50!black,thick,double,dashed},
control/.style={rectangle,red!40!black,draw=red!40!black,thick},
mglevel/.style={rounded rectangle,draw=blue!50!black,fill=blue!20,thick,minimum size=6mm},
checkpoint/.style={rectangle,draw=green!50!black,fill=green!20,thick,minimum size=6mm},
mglevelhide/.style={rounded rectangle,draw=gray!50!black,fill=gray!20,thick,minimum size=6mm},
tau/.style={text=red!50!black,draw=red!50!black,fill=red!10,inner sep=1pt},
crelax/.style={text=green!50!black,fill=green!10,inner sep=0pt}
]
\begin{scope}
\newcommand\mgdx{1.9em}
\newcommand\mgdy{2.5em}
\newcommand\mgloc[4]{(#1 + #4*\mgdx*#3,#2 + \mgdy*#3)}
\node[mglevel] (fine0) at \mgloc{0}{0}{4}{-1} {\mglevelfine};
\node[mglevel] (finem1down0) at \mgloc{0}{0}{3}{-1} {};
\node[mglevel] (cp1down0) at \mgloc{0}{0}{2}{-1} {$\mglevelcp+1$};
\node[mglevel] (cpdown0) at \mgloc{0}{0}{1}{-1} {\mglevelcp};
\node[mglevel] (coarser0) at \mgloc{0}{0}{0}{0} {\ldots};
\node[mglevelhide] (cpup0) at \mgloc{0}{0}{1}{1} {};
\node (cp1up0) at \mgloc{0}{0}{2}{1} {};
\node (cpdown1) at \mgloc{4em}{0}{1}{-1} {};
\node[mglevelhide] (coarser1) at \mgloc{4em}{0}{0}{1} {\ldots};
\node[mglevel] (cpup1) at \mgloc{4em}{0}{1}{1} {\mglevelcp};
\node[mglevel] (cp1up1) at \mgloc{4em}{0}{2}{1} {$\mglevelcp+1$};
\node[mglevel] (finem1up1) at \mgloc{4em}{0}{3}{1} {};
\node[mglevel] (fine1) at \mgloc{4em}{0}{4}{1} {\mglevelfine};
\draw[->,restrict,dashed] (fine0) -- (finem1down0);
\draw[->,restrict] (finem1down0) -- (cp1down0);
\draw[->,restrict] (cp1down0) -- (cpdown0);
\draw[->,restrict,dashed] (cpdown0) -- (coarser0);
\draw[->,prolong,dashed] (coarser0) -- (cpup0);
\draw[->,prolong,dashed] (cpup0) -- (cp1up0);
\draw[->,restrict,dashed] (cpdown1) -- (coarser1);
\draw[->,prolong,dashed] (coarser1) -- (cpup1);
\draw[->,prolong] (cpup1) -- (cp1up1);
\draw[->,prolong] (cp1up1) -- (finem1up1);
\draw[->,prolong,dashed] (finem1up1) -- (fine1);
\node[checkpoint] at (4em + \mgdx*4,\mgdy) (cp) {CP};
\draw[>->,cprestrict] (fine1) -- node[below,sloped] {Restrict} (cp);
\node[left=\mgdx of fine0] (bnanchor) {};
\node[control,fill=red!20] at (1.1*\mgdx,3*\mgdy) {Solve $F(u^n;b^n) = 0$};
\node[mglevel,right=of fine1] (finedt) {next solve};
\draw[->, >=stealth, control] (fine1) to[out=20,in=170] node[above] {$b^{n+1}(u^n,b^n)$} (finedt);
\draw[->, >=stealth, control] (bnanchor) to[out=45,in=155] node[above] {$b^n$} (fine0);
% Recovery process
\begin{scope}[xshift=8*\mgdx]
\node[checkpoint] (rcp) at \mgloc{0}{0}{0}{0} {CP};
\node[mglevel] (r0a) at \mgloc{0}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1a) at \mgloc{0}{\mgdy}{1}{1} {};
\node[mglevel] (r0b) at \mgloc{2*\mgdx}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1b) at \mgloc{2*\mgdx}{\mgdy}{1}{1} {};
\node[mglevel] (r2b) at \mgloc{2*\mgdx}{\mgdy}{2}{1} {\mglevelfine};
\node[mglevel] (r1c) at \mgloc{6*\mgdx}{\mgdy}{1}{-1} {};
\node[mglevel] (r0d) at \mgloc{6*\mgdx}{\mgdy}{0}{0} {CR};
\node[mglevel] (r1d) at \mgloc{6*\mgdx}{\mgdy}{1}{1} {};
\node[mglevel] (r2d) at \mgloc{6*\mgdx}{\mgdy}{2}{1} {\mglevelfine};
\draw[-,prolong,green!50!black] (rcp) -- (r0a);
\draw[->,prolong] (r0a) -- (r1a);
\draw[->,restrict] (r1a) -- (r0b);
\draw[->,restrict] (r0b) -- (r1b);
\draw[->,restrict,dashed] (r1b) -- (r2b);
\draw[->,restrict,dashed] (r2b) -- (r1c);
\draw[->,restrict] (r1c) -- (r0d);
\draw[->,restrict] (r0d) -- (r1d);
\draw[->,restrict,dashed] (r1d) -- (r2d);
\foreach \smooth in {finem1down0, cp1down0, cpdown0, coarser0,
cpup1, cp1up1, finem1up1,
r0b,r1c,r0d,r1d} {
\node[above left=-5pt of \smooth.west,tau] {$\tau$};
}
\node[rectangle,fill=none,draw=green!50!black,thick,fit=(rcp)(r2d)] (recoverbox) {};
\node[rectangle,draw=green!50!black,fill=green!20,thick,minimum size=6mm,above={0cm of recoverbox.south east},anchor=south east] (recover) {FMG Recovery};
\end{scope}
\node (notation) at (\mgdx,5*\mgdy) {
\begin{minipage}{18em}\small\sf
\begin{itemize}\addtolength{\itemsep}{-5pt}
\item checkpoint converged coarse state
\item recover using FMG anchored at $\mglevelcp+1$
\item needs only $\mglevelcp$ neighbor points
\item $\tau$ correction is local
\end{itemize}
\end{minipage}
};
\end{scope}
\end{tikzpicture}
\begin{itemize}
\item Normal multigrid cycles visit all levels moving from $n \to n+1$
\item FMG recovery only accesses levels finer than $\ell_{CP}$
% \item Only failed processes and neighbors participate in recovery
\item Lightweight checkpointing for transient adjoint computation
\item Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain
\end{itemize}
\end{frame}
\begin{frame}{Outlook on $\tau$-FAS adaptivity and compression}
\begin{itemize}
\item Benefits of AMR without fine-scale smoothness
\item Coarse-centric restructuring is a major interface change
\item Nonlinear smoothers (and discretizations)
\begin{itemize}
\item Smooth in neighborhood of ``interesting'' fine-scale features
\item Which discretizations can provide efficient matrix-free smoothers?
\end{itemize}
\item Dynamic load balancing
\item Reliability of error estimates for refreshing $\tau$
\begin{itemize}
\item We want a coarse indicator for whether $\tau$ needs to change
\end{itemize}
\item Worthwhile for resilience and to better use hardware
\end{itemize}
\end{frame}
\end{document}