forked from aw31/empirical-ntks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
318 lines (277 loc) · 10.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import logging
import pathlib
import sys
import time
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from datasets.FGVCAircraft import FGVCAircraft
from datasets.Food101 import Food101
from datasets.Flowers102 import Flowers102
# From https://stackoverflow.com/a/1094933
def humanize_units(size, unit="B"):
for prefix in ["", "Ki", "Mi", "Gi", "Ti", "Pi"]:
if size < 1024.0 or prefix == "Pi":
break
size /= 1024.0
return f"{size:.1f}{prefix}"
def init_torch(allow_tf32=False, benchmark=False, deterministic=True, verbose=False):
# Disable tf32 in favor of more accurate gradients
torch.backends.cuda.matmul.allow_tf32 = allow_tf32
torch.backends.cudnn.allow_tf32 = allow_tf32
# Benchmarking can lead to non-determinism
torch.backends.cudnn.benchmark = benchmark
# Ensure repeated gradient calculations are consistent
torch.backends.cudnn.deterministic = deterministic
if verbose:
logging.info(f"{torch.backends.cuda.matmul.allow_tf32 = }")
logging.info(f"{torch.backends.cudnn.allow_tf32 = }")
logging.info(f"{torch.backends.cudnn.benchmark = }")
logging.info(f"{torch.backends.cudnn.deterministic = }")
def init_logging(handle, logdir):
if logdir is not None:
logdir = pathlib.Path(logdir)
logdir.mkdir(parents=True, exist_ok=True)
timestamp = int(time.time())
filename = logdir / f"{handle}-{timestamp}.log"
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[
logging.FileHandler(filename=filename),
logging.StreamHandler(sys.stdout),
],
)
logging.info(f"Logging to {filename}")
else:
logging.basicConfig(
format="%(asctime)s [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.DEBUG,
stream=sys.stdout,
)
def load_model(name):
rng_state = torch.get_rng_state()
if name == "resnet-18_init":
torch.manual_seed(438)
model = models.resnet18()
model.fc = nn.Linear(512, 1)
elif name == "resnet-18_pretrained":
torch.manual_seed(438)
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(512, 1)
elif name == "resnet-34_init":
torch.manual_seed(438)
model = models.resnet34()
model.fc = nn.Linear(512, 1)
elif name == "resnet-34_pretrained":
torch.manual_seed(438)
model = models.resnet34(pretrained=True)
model.fc = nn.Linear(512, 1)
elif name == "resnet-50_init":
torch.manual_seed(438)
model = models.resnet50()
model.fc = nn.Linear(2048, 1)
elif name == "resnet-50_pretrained":
torch.manual_seed(438)
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(2048, 1)
elif name == "resnet-101_init":
torch.manual_seed(438)
model = models.resnet101()
model.fc = nn.Linear(2048, 1)
elif name == "resnet-101_pretrained":
torch.manual_seed(438)
model = models.resnet101(pretrained=True)
model.fc = nn.Linear(2048, 1)
elif name == "resnext-101-32x8d_init":
torch.manual_seed(438)
model = models.resnet101_32x8d()
model.fc = nn.Linear(2048, 1)
elif name == "resnext-101-32x8d_pretrained":
torch.manual_seed(438)
model = models.resnet101_32x8d(pretrained=True)
model.fc = nn.Linear(2048, 1)
elif name == "efficientnet-b7_init":
torch.manual_seed(438)
model = models.efficientnet_b7()
model.classifier[1] = nn.Linear(2560, 1)
elif name == "efficientnet-b7_pretrained":
torch.manual_seed(438)
model = models.efficientnet_b7(pretrained=True)
model.classifier[1] = nn.Linear(2560, 1)
else:
assert False
torch.set_rng_state(rng_state)
return model
def load_FakeData():
transform = transforms.ToTensor()
dataset = datasets.FakeData(size=250, transform=transform)
return dataset
def load_CIFAR10(datadir, split):
root = str(datadir / "CIFAR-10")
train = split == "train"
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform = [
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = datasets.CIFAR10(root, train=train, transform=transform, download=True)
return dataset
def load_CIFAR100(datadir, split):
root = str(datadir / "CIFAR-100")
train = split == "train"
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform = [
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = datasets.CIFAR100(root, train=train, transform=transform, download=True)
return dataset
def load_SVHN(datadir, split):
root = str(datadir / "SVHN")
mean = [0.4380, 0.4440, 0.4730]
std = [0.1751, 0.1771, 0.1744]
transform = [
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = datasets.SVHN(root, split=split, transform=transform, download=True)
return dataset
def load_FashionMNIST(datadir, split):
root = str(datadir / "FashionMNIST")
train = split == "train"
mean = [0.2860]
std = [0.3530]
transform = [
transforms.Grayscale(3),
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = datasets.FashionMNIST(
root, train=train, transform=transform, download=True
)
return dataset
def load_FGVCAircraft(datadir, split):
root = str(datadir / "FGVCAircraft")
train = split == "train"
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform = [
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = FGVCAircraft(root, train=train, transform=transform, download=True)
return dataset
def load_Food101(datadir, split):
root = str(datadir / "Food-101")
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform = [
transforms.Resize(240),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = Food101(root, split=split, transform=transform, download=True)
return dataset
def load_Flowers102(datadir, split):
root = str(datadir / "Flowers-102")
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform = [
transforms.Resize(240),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
transform = transforms.Compose(transform)
dataset = Flowers102(root, split=split, transform=transform, download=True)
return dataset
def load_subset(name, split, dataset):
train = split == "train"
_, train_begin, train_end, test_begin, test_end = name.split("_")
subset = (train_begin, train_end) if train else (test_begin, test_end)
subset_begin, subset_end = map(int, subset)
assert subset_begin >= 0, f"{subset_begin} < 0"
assert subset_begin < subset_end, f"{subset_begin} >= {subset_end}"
assert subset_end <= len(dataset), f"{subset_end} > {len(dataset)}"
dataset = torch.utils.data.Subset(dataset, range(subset_begin, subset_end))
return dataset
def load_dataset(datadir, name, split):
if name == "FakeData":
dataset = load_FakeData()
elif name == "CIFAR-10":
dataset = load_CIFAR10(datadir, split)
elif name.startswith("CIFAR-10_"):
dataset = load_CIFAR10(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "CIFAR-100":
dataset = load_CIFAR100(datadir, split)
elif name.startswith("CIFAR-100_"):
dataset = load_CIFAR100(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "SVHN":
dataset = load_SVHN(datadir, split)
elif name.startswith("SVHN_"):
dataset = load_SVHN(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "FashionMNIST":
dataset = load_FashionMNIST(datadir, split)
elif name.startswith("FashionMNIST_"):
dataset = load_FashionMNIST(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "FGVCAircraft":
dataset = load_FGVCAircraft(datadir, split)
elif name.startswith("FGVCAircraft_"):
dataset = load_FGVCAircraft(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "Food-101":
dataset = load_Food101(datadir, split)
elif name.startswith("Food-101_"):
dataset = load_Food101(datadir, split)
dataset = load_subset(name, split, dataset)
elif name == "Flowers-102":
dataset = load_Flowers102(datadir, split)
elif name.startswith("Flowers-102_"):
dataset = load_Flowers102(datadir, split)
dataset = load_subset(name, split, dataset)
else:
assert False
return dataset
def num_classes_of(name):
if name == "FakeData":
num_classes = 0
elif name == "CIFAR-10" or name.startswith("CIFAR-10_"):
num_classes = 10
elif name == "CIFAR-100" or name.startswith("CIFAR-100_"):
num_classes = 100
elif name == "SVHN" or name.startswith("SVHN_"):
num_classes = 10
elif name == "FashionMNIST" or name.startswith("FashionMNIST_"):
num_classes = 10
elif name == "FGVCAircraft" or name.startswith("FGVCAircraft_"):
num_classes = 102
elif name == "Food-101" or name.startswith("Food-101_"):
num_classes = 101
elif name == "Flowers-102" or name.startswith("Flowers-102_"):
num_classes = 102
else:
assert False
return num_classes