forked from jmarron7/a-star-pathfinding-visualizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastar_visualizer.py
268 lines (210 loc) · 7.87 KB
/
astar_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
### A* Pathfinding Algorithm Visualizer
# https://en.wikipedia.org/wiki/A*_search_algorithm
import pygame
import math
from queue import PriorityQueue
SIZE = 800 #Window is going to be a square so we only need one variable for both Length and Width
WIN = pygame.display.set_mode((SIZE, SIZE)) #Setting Window Size
pygame.display.set_caption("A* Pathfinding Algorithm Visualizer") #Window Title
#Defining RGB Color Codes for our Cells
#THe Color of the cell will let us know what kind of cell/what attributes a cell has
BLACK = (0 , 0, 0) #Barrier
WHITE = (255, 255, 255) #Empty
GRAY = (128, 128, 128) #Grid Lines
RED = (255, 0 , 0) #Closed
GREEN = (0, 255, 0) #Open
ORANGE = (255, 165, 0) #Start
PURPLE = (128, 0 , 128) #End
TURQUOISE = (64, 224, 208) #Path
class Cell:
def __init__(self, row, col, size, total_rows):
self.row = row
self.col = col
self.x = row * size
self.y = col * size
self.color = WHITE
self.neighbors = []
self.size = size
self.total_rows = total_rows
#Gets the position of the cell
def get_pos(self):
return self.row, self.col
#Methods that check the type of cell
def is_closed(self):
return self.color == RED
def is_open(self):
return self.color == GREEN
def is_barrier(self):
return self.color == BLACK
def is_start(self):
return self.color == ORANGE
def is_end(self):
return self.color == PURPLE
#Methods that set/make cells
def make_closed(self):
self.color = RED
def make_open(self):
self.color = GREEN
def make_barrier(self):
self.color = BLACK
def make_start(self):
self.color = ORANGE
def make_end(self):
self.color = PURPLE
def make_path(self):
self.color = TURQUOISE
#Resets cell back to empty/white
def reset(self):
self.color = WHITE
#Draws Cell
def draw(self, win):
pygame.draw.rect(win, self.color, (self.x, self.y, self.size, self.size))
#Checks and updates neighboring Cells
def update_neighbors(self, grid):
self.neighbors = []
#DOWN
if self.row < self.total_rows - 1 and not grid[self.row + 1][self.col].is_barrier():
self.neighbors.append(grid[self.row + 1][self.col])
#UP
if self.row > 0 and not grid[self.row - 1][self.col].is_barrier():
self.neighbors.append(grid[self.row - 1][self.col])
#RIGHT
if self.col < self.total_rows - 1 and not grid[self.row][self.col + 1].is_barrier():
self.neighbors.append(grid[self.row][self.col + 1])
#LEFT
if self.row > 0 and not grid[self.row][self.col - 1].is_barrier():
self.neighbors.append(grid[self.row][self.col - 1])
def __lt__(self, other):
return False
#Defining our heuristic to calculate the distance between two points (p1 and p2)
def h(p1, p2):
x1, y1 = p1
x2, y2 = p2
return abs(x1 - x2) + abs(y1 - y2)
#Reconstructs shortest path between start and end to draw
def reconstruct_path(came_from, current, draw):
while current in came_from:
current = came_from[current]
current.make_path()
draw()
#Algorithm Logic
def algorithm(draw, grid, start, end):
count = 0
open_set = PriorityQueue()
open_set.put((0, count, start))
came_from = {}
g_score = {cell: float("inf") for row in grid for cell in row}
g_score[start] = 0
f_score = {cell: float("inf") for row in grid for cell in row}
f_score[start] = h(start.get_pos(), end.get_pos())
open_set_hash = {start}
while not open_set.empty():
#Allows user to quit program while algorithm is running
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
current = open_set.get()[2]
open_set_hash.remove(current)
#Makes path if current cell is the end cell
if current == end:
reconstruct_path(came_from, end, draw)
end.make_end()
return True
for neighbor in current.neighbors:
temp_g_score = g_score[current] + 1
if temp_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = temp_g_score
f_score[neighbor] = temp_g_score + h(neighbor.get_pos(), end.get_pos())
if neighbor not in open_set_hash:
count += 1
open_set.put((f_score[neighbor], count, neighbor))
open_set_hash.add(neighbor)
neighbor.make_open()
draw()
if current != start:
current.make_closed()
return False
#Makes grid of cells
def make_grid(rows, size):
grid = []
gap = size // rows
for i in range(rows):
grid.append([])
for j in range(rows):
cell = Cell(i , j, gap, rows)
grid[i].append(cell)
return grid
#Draws the grid lines onto the Window
def draw_grid(win, rows, size):
gap = size // rows
#For loop draws vertical lines
for i in range(rows):
pygame.draw.line(win, GRAY, (0, i * gap), (size, i * gap))
#Draws horizontal lines
for j in range(rows):
pygame.draw.line(win, GRAY, (j * gap, 0), (j * gap, size))
def draw(win, grid, rows, size):
win.fill(WHITE)
for row in grid:
for cell in row:
cell.draw(win)
draw_grid(win, rows, size)
pygame.display.update()
def get_clicked_pos(pos, rows, size):
gap = size // rows
y, x = pos
row = y // gap
col = x // gap
return row, col
#MAIN LOOP
def main(win, size):
ROWS = 50
grid = make_grid(ROWS, size)
#Start/End Cells
start_cell = None
end_cell = None
run = True
#Main loop
while run:
draw(win, grid, ROWS, size)
#Checks for different types of events that may happen
for event in pygame.event.get():
#Quit Event
if event.type == pygame.QUIT:
run = False
#Left Mouse Click
if pygame.mouse.get_pressed()[0]:
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, size)
cell = grid[row][col]
#If Start cell does not exist, make it
if not start_cell and cell != end_cell:
start_cell = cell
start_cell.make_start()
#If End cell does not exist, make it
elif not end_cell and cell != start_cell:
end_cell = cell
end_cell.make_end()
#make barrier cells
elif cell != end_cell and cell != start_cell:
cell.make_barrier()
#Right Mouse Click/Erase
elif pygame.mouse.get_pressed()[2]:
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, size)
cell = grid[row][col]
cell.reset()
if cell == start_cell:
start_cell = None
elif cell == end_cell:
end_cell = None
#SPACEBAR starts the pathfinding algorithm
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and start_cell and end_cell:
for row in grid:
for cell in row:
cell.update_neighbors(grid)
algorithm(lambda: draw(win, grid, ROWS, size), grid, start_cell, end_cell)
pygame.quit()
main(WIN, SIZE)