-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathutils.py
74 lines (57 loc) · 2.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import print_function
import numpy as np
from scipy.stats import norm
from skimage.restoration import denoise_tv_chambolle
from scipy import ndimage
from keras.utils.generic_utils import Progbar
def crps(true, pred):
"""
Calculation of CRPS.
:param true: true values (labels)
:param pred: predicted values
"""
return np.sum(np.square(true - pred)) / true.size
def real_to_cdf(y, sigma=1e-10):
"""
Utility function for creating CDF from real number and sigma (uncertainty measure).
:param y: array of real values
:param sigma: uncertainty measure. The higher sigma, the more imprecise the prediction is, and vice versa.
Default value for sigma is 1e-10 to produce step function if needed.
"""
cdf = np.zeros((y.shape[0], 600))
for i in range(y.shape[0]):
cdf[i] = norm.cdf(np.linspace(0, 599, 600), y[i], sigma)
return cdf
def preprocess(X):
"""
Pre-process images that are fed to neural network.
:param X: X
"""
progbar = Progbar(X.shape[0]) # progress bar for pre-processing status tracking
for i in range(X.shape[0]):
for j in range(X.shape[1]):
X[i, j] = denoise_tv_chambolle(X[i, j], weight=0.1, multichannel=False)
progbar.add(1)
return X
def rotation_augmentation(X, angle_range):
progbar = Progbar(X.shape[0]) # progress bar for augmentation status tracking
X_rot = np.copy(X)
for i in range(len(X)):
angle = np.random.randint(-angle_range, angle_range)
for j in range(X.shape[1]):
X_rot[i, j] = ndimage.rotate(X[i, j], angle, reshape=False, order=1)
progbar.add(1)
return X_rot
def shift_augmentation(X, h_range, w_range):
progbar = Progbar(X.shape[0]) # progress bar for augmentation status tracking
X_shift = np.copy(X)
size = X.shape[2:]
for i in range(len(X)):
h_random = np.random.rand() * h_range * 2. - h_range
w_random = np.random.rand() * w_range * 2. - w_range
h_shift = int(h_random * size[0])
w_shift = int(w_random * size[1])
for j in range(X.shape[1]):
X_shift[i, j] = ndimage.shift(X[i, j], (h_shift, w_shift), order=0)
progbar.add(1)
return X_shift