diff --git a/README.md b/README.md index 3710891..071f6f0 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ Materials for a technical, nuts-and-bolts course about increasing transparency, fairness, security and privacy in machine learning. -* Lecture 1: Interpretable Machine Learning Models +* Lecture 1: Self-explainable Machine Learning Models * Lecture 2: Post-hoc Explanation * Lecture 3: Discrimination Testing and Remediation * Lecture 4: Machine Learning Security @@ -13,25 +13,28 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha *** -## Lecture 1: Interpretable Machine Learning Models +## Lecture 1: Self-explainable Machine Learning Models ![Histogram, partial dependence, and ICE for a monotonic GBM and a credit card customer's most recent repayment status](/img/ebm.png) **Source:** [Simple Explainable Boosting Machine Example](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1_ebm_example.ipynb?flush_cache=true) ### Lecture 1 Class Materials -* [Syllabus](https://raw.githubusercontent.com/jphall663/GWU_rml/master/Syllabus_PH_Responsible_Machine_Learning_MSBA_v4.pdf) +* [Syllabus](https://github.com/jphall663/GWU_rml/blob/master/Syllabus_PH_Responsible_Machine_Learning_MSBA_v4.pdf) * [Lecture Notes](tex/lecture_1.pdf) * [Assignment 1](https://raw.githubusercontent.com/jphall663/GWU_rml/master/assignments/tex/assignment_1.pdf) * [Model evaluation notebook](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/assignments/eval.ipynb) - * [Full evaluations results](https://github.com/jphall663/GWU_rml/blob/master/assignments/model_eval_2021_06_25_13_04_19.csv) + * [Full evaluations results]() * Software Examples: - * [Building from Penalized GLM to Monotonic GBM](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1.ipynb?flush_cache=true) + * [Building from Penalized GLM to Monotonic GBM (simple)](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1.ipynb?flush_cache=true) + * [Building from Penalized GLM to Monotonic GBM](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/glm_mgbm_gbm.ipynb?flush_cache=true) * [Simple Explainable Boosting Machine Example](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1_ebm_example.ipynb?flush_cache=true) + * [PiML Credit Card Data Example](https://colab.research.google.com/github/SelfExplainML/PiML-Toolbox/blob/main/examples/Example_TaiwanCredit.ipynb) ### Lecture 1 Suggested Software +* Python [PiML-Toolbox](https://github.com/SelfExplainML/PiML-Toolbox) * Python [explainable boosting machine (EBM)/GA2M](https://github.com/interpretml/interpret) * R [`gam`](https://cran.r-project.org/web/packages/gam/index.html) * `h2o` [penalized GLM](https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html) (R and Python) @@ -42,17 +45,17 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha ### Lecture 1 Suggested Reading * **Introduction and Background**: - * [*Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead*](https://www.nature.com/articles/s42256-019-0048-x) + * [*Designing Inherently Interpretable Machine Learning Models*](https://arxiv.org/pdf/2111.01743.pdf) + * [*Psychological Foundations of Explainability and Interpretability in Artificial Intelligence*](https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf) * **[Responsible Artificial Intelligence](https://www.springer.com/gp/book/9783030303709)** - Sections 2.1-2.5, Chapter 7 - -* **Interpretable Machine Learning Techniques**: + * [*Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead*](https://www.nature.com/articles/s42256-019-0048-x) + +* **Self-explainaing Machine Learning Techniques**: * **Interpretable Machine Learning** - [Chapter 4](https://christophm.github.io/interpretable-ml-book/simple.html) * [*Accurate Intelligible Models with Pairwise Interactions*](http://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf) * [*This Looks Like That: Deep Learning for Interpretable Image Recognition*](https://arxiv.org/pdf/1806.10574.pdf) * **Links from Lecture 1**: - * [EU AI Regulation Proposal](https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence) - * [FTC Guidance (2021)](https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai) ***