-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathSTREAMLINE_SPM.m
68 lines (61 loc) · 3.26 KB
/
STREAMLINE_SPM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function [Mx,My] = STREAMLINE_SPM(XP,YP,XB,YB,phi,S)
% FUNCTION - COMPUTE Mx AND My GEOMETRIC INTEGRALS FOR SOURCE PANEL METHOD
% Written by: JoshTheEngineer
% YouTube : www.youtube.com/joshtheengineer
% Website : www.joshtheengineer.com
% Updated : 04/28/20 - Updated E value error handling to match Python
%
% PURPOSE
% - Compute the geometric integral at point P due to source panels
% - Source panel strengths are constant, but can change from panel to panel
% - Geometric integral for X-direction: Mx(pj)
% - Geometric integral for Y-direction: My(pj)
%
% REFERENCE
% - [1]: Streamline Geometric Integral SPM, Mx(pj) and My(pj)
% Link: https://www.youtube.com/watch?v=BnPZjGCatcg
% INPUTS
% - XP : X-coordinate of computation point, P
% - YP : Y-coordinate of computation point, P
% - XB : X-coordinate of boundary points
% - YB : Y-coordinate of boundary points
% - phi : Angle between positive X-axis and interior of panel
% - S : Length of panel
%
% OUTPUTS
% - Mx : Value of X-direction geometric integral (Ref [1])
% - My : Value of Y-direction geometric integral (Ref [1])
% Number of panels
numPan = length(XB)-1; % Number of panels/control points
% Initialize arrays
Mx = zeros(numPan,1); % Initialize Mx integral array
My = zeros(numPan,1); % Initialize My integral array
% Compute Mx and My
for j = 1:1:numPan % Loop over the j panels
% Compute intermediate values
A = -(XP-XB(j))*cos(phi(j))-(YP-YB(j))*sin(phi(j)); % A term
B = (XP-XB(j))^2+(YP-YB(j))^2; % B term
Cx = -cos(phi(j)); % C term (X-direction)
Dx = XP - XB(j); % D term (X-direction)
Cy = -sin(phi(j)); % C term (Y-direction)
Dy = YP - YB(j); % D term (Y-direction)
E = sqrt(B-A^2); % E term
if (~isreal(E))
E = 0;
end
% Compute Mx, Ref [1]
term1 = 0.5*Cx*log((S(j)^2+2*A*S(j)+B)/B); % First term in Mx equation
term2 = ((Dx-A*Cx)/E)*(atan2((S(j)+A),E) - atan2(A,E)); % Second term in Mx equation
Mx(j) = term1 + term2; % X-direction geometric integral
% Compute My, Ref [1]
term1 = 0.5*Cy*log((S(j)^2+2*A*S(j)+B)/B); % First term in My equation
term2 = ((Dy-A*Cy)/E)*(atan2((S(j)+A),E) - atan2(A,E)); % Second term in My equation
My(j) = term1 + term2; % Y-direction geometric integral
% Zero out any NANs, INFs, or imaginary numbers
if (isnan(Mx(j)) || isinf(Mx(j)) || ~isreal(Mx(j)))
Mx(j) = 0;
end
if (isnan(My(j)) || isinf(My(j)) || ~isreal(My(j)))
My(j) = 0;
end
end