-
Notifications
You must be signed in to change notification settings - Fork 43
/
Vortex_Flow.py
84 lines (72 loc) · 6.03 KB
/
Vortex_Flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# ELEMENTARY FLOW - VORTEX FLOW
# Written by: JoshTheEngineer
# YouTube : www.youtube.com/joshtheengineer
# Website : www.joshtheengineer.com
# Started: 02/19/19
# Updated: 02/19/19 - Transferred from MATLAB to Python
# - Works as expected
import numpy as np
import matplotlib.pyplot as plt
from COMPUTE_CIRCULATION import COMPUTE_CIRCULATION
# %% KNOWNS
gamma = 2 # Vortex strength (+: CW, -: CCW)
X0 = 0 # Vortex X coordinate
Y0 = 0 # Vortex Y coordinate
# %% CALCULATIONS
# Create grid
numX = 100 # Number of X points
numY = 100 # Number of Y points
X = np.linspace(-10,10,numX) # X-point array
Y = np.linspace(-10,10,numY) # Y-point array
XX, YY = np.meshgrid(X,Y) # Create the meshgrid
# Solve for velocities
Vx = np.zeros([numX,numY]) # Initialize X velocity component
Vy = np.zeros([numX,numY]) # Initialize Y velocity component
V = np.zeros([numX,numY]) # Initialize velocity
Vt = np.zeros([numX,numY]) # Initialize tangential velocity component
Vr = np.zeros([numX,numY]) # Initialize radial velocity component
r = np.zeros([numX,numY]) # Initialize radius
for i in range(numX): # Loop over X points
for j in range(numY): # Loop over Y points
x = XX[i,j] # X coordinate
y = YY[i,j] # Y coordinate
dx = x - X0 # X distance from vortex
dy = y - Y0 # Y distance from vortex
r = np.sqrt(dx**2 + dy**2) # Distance from vortex
Vx[i,j] = (gamma*dy)/(2*np.pi*r**2) # Compute X velocity component
Vy[i,j] = (-gamma*dx)/(2*np.pi*r**2) # Compute Y velocity component
V[i,j] = np.sqrt(Vx[i,j]**2 + Vy[i,j]**2) # Compute velocity
Vt[i,j] = -gamma/(2*np.pi*r) # Compute tangential velocity component
Vr[i,j] = 0 # Compute radial velocity component
# %% COMPUTE CIRCULATIONS
a = 2 # Horizontal axis half-length
b = 2 # Vertical axis half-length
x0 = 0 # Ellipse center X coordinate
y0 = 0 # Ellipse center Y coordinate
numT = 50 # Number of points along ellipse
Gamma, xC, yC, VxC, VyC = COMPUTE_CIRCULATION(a,b,x0,y0,numT,Vx,Vy,X,Y) # Call circulation calculation
print("Circulation: ", Gamma) # Display circulation result
#a = 0.5 # Horizontal axis half-length
#b = 0.5 # Vertical axis half-length
#x0 = 0 # Ellipse center X coordinate
#y0 = 2 # Ellipse center Y coordinate
#numT = 50 # Number of points along ellipse
#Gamma, xC, yC, VxC, VyC = COMPUTE_CIRCULATION(a,b,x0,y0,numT,Vx,Vy,X,Y) # Call circulation calculation
#print("Circulation: ", Gamma) # Display circulation result
# %% PLOTTING
# Plot velocity vectors
fig = plt.figure(1) # Create figure
plt.cla() # Get ready for plotting
plt.quiver(X,Y,Vx,Vy) # Plot velocity vectors
plt.plot(xC,yC,'b-') # Plot ellipse
plt.title('Vortex Flow') # Set title
plt.xlabel('X-Axis') # Set X-label
plt.ylabel('Y-Axis') # Set Y-label
plt.xlim([-3, 3]) # Set X-limits
plt.ylim([-3, 3]) # Set Y-limits
plt.gca().set_aspect('equal') # Set axes equal
plt.show() # Display plot
## Save the figure
#saveFlnm = 'Vortex_Flow_Pos'
#savePth = 'C:/Users/Josh/Documents/Latex/YouTube/Panel_Methods/Figures_Python/' + saveFlnm + '.pdf'
#plt.savefig(savePth,bbox_inches='tight',facecolor='w',edgecolor='w')