-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_story_rgb_mask_02.py
166 lines (140 loc) · 6.25 KB
/
eval_story_rgb_mask_02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Project:
Author:
Date:
Description:
This is an example based on bounding box detection, in which the model predicts something and an image is showed.
Output
---------
Bounding boxes rectangles
Mask instance segmentation.
Merged binary mask
Use:
"""
import os
import time
import torch
import numpy as np
# Managing images formats
from torchvision.io import read_image
from PIL import Image
import torchvision.transforms.functional as F
# Deep learning models
from torchvision.models.detection import maskrcnn_resnet50_fpn
# Drawing on the screen
from torchvision.utils import draw_segmentation_masks
from helpers.helper_examples import COCO_INSTANCE_CATEGORY_NAMES
from helpers.helper_examples import show_one_image
from helpers.helper_examples import merge_masks
from helpers.helper_examples import read_transform_return
def main_masks_story_rgb_02():
print('------------------------------------')
print('MAIN MASK EVALUATION')
print('------------------------------------')
main_path_project = os.path.abspath('.')
# -------------------------------------------
# Datasets
# -------------------------------------------
dataset_folder = os.path.join('dataset', 'story_rgb') # YOUR_DATASET HERE
path_dataset = os.path.join(main_path_project, dataset_folder)
path_images_folder = 'images'
path_dataset_images = os.path.join(path_dataset, path_images_folder)
# -------------------------------------------
# Output results
# -------------------------------------------
output_folder = 'output'
path_output = os.path.join(main_path_project, output_folder)
img_result_rgb = 'result_rgb_.png'
img_result_mask = 'result_mask_.png'
path_image_01_result_rgb = os.path.join(path_output, img_result_rgb)
path_image_01_result_mask = os.path.join(path_output, img_result_mask)
# -------------------------------------------
# Open image with Pillow.Image.open() and torchvision.io.read_image()
# -------------------------------------------
img_to_eval_name = '20210927_114012_k_r2_e_000_150_138_2_0_C.png'
path_img_to_eval = os.path.join(path_dataset_images, img_to_eval_name)
p_img_to_eval = Image.open(path_img_to_eval) # {PngImageFile}
# used to draw masks
t_img_to_eval = read_image(path_img_to_eval) # Get Tensor data
# ------------------------------------------
# Model initialization for object prediction
# -------------------------------------------
# loading the trained model only once to reduce time
score_threshold = 0.8
start_time_model_load = time.time()
device_selected = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = maskrcnn_resnet50_fpn(pretrained=True, progress=False)
model.to(device_selected)
model.eval() # enabling evaluation mode
end_time_model_load = time.time()
# -------------------------------------
# Image evaluation with model
# -------------------------------------
start_time_eval = time.time() # this is the evaluation
# Data type int_input {Tensor:3}, tensor_input {Tensor:1}
int_input, tensor_input = read_transform_return(p_img_to_eval)
with torch.no_grad():
predictions_model = model(tensor_input.to(device_selected))
end_time_eval = time.time()
# -------------------------------------
# Managing prediction, making something here (filtering, extracting)
# -------------------------------------
pred_boxes = predictions_model[0]['boxes'].detach().cpu().numpy()
pred_scores = predictions_model[0]['scores'].detach().cpu().numpy()
pred_labels = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in predictions_model[0]['labels'].cpu().numpy()]
pred_masks = predictions_model[0]['masks']
# -------------------------------------
# Filtering predictions according to rules
# -------------------------------------
boxes_filtered = pred_boxes[pred_scores >= score_threshold].astype(np.int32)
labels_filtered = pred_labels[:len(boxes_filtered)]
masks_filtered = pred_masks[pred_scores >= score_threshold]
final_masks = masks_filtered > 0.5 # ?
final_masks = final_masks.squeeze(1) # ?
# -------------------------------------
# It displays the results on the screen according to the colours.
# -------------------------------------
colours = np.random.randint(0, 255, size=(len(boxes_filtered), 3)) # random colours
colours_to_draw = [tuple(color) for color in colours]
# save masks detected
mask_seg_result = draw_segmentation_masks(
image=t_img_to_eval,
masks=final_masks,
colors=colours_to_draw,
alpha=0.8
)
# Manage with Pillow
p_mask_img = F.to_pil_image(mask_seg_result)
p_mask_img.save(path_image_01_result_rgb)
# TODO: add as result rgb export from Pillow, and conversion from tensor
# save binary image detected by model
merged_masks = merge_masks(final_masks)
merged_binary_img = Image.fromarray(merged_masks.mul(255).byte().cpu().numpy())
# merged_binary_img.show('binary mask to show')
# -------
# mask_seg_result.save(path_image_01_result_rgb)
merged_binary_img.save(path_image_01_result_mask)
# -------------------------------------
# Display data on screen
# -------------------------------------
total_time_model_load = end_time_model_load - start_time_model_load
total_time_eval = end_time_eval - start_time_eval
w, h = p_img_to_eval.size
print('------------------------------------')
print(f'Main parameters')
print(f'Image size width={w} height={h}')
print(f'path_dataset_images={path_dataset_images}')
print(f'path_img_to_evaluate_01={path_img_to_eval}')
print(f'device_selected={device_selected}')
print(f'score_threshold={score_threshold}')
print(f'model={type(model).__name__}')
print(f'total_time_model_load={total_time_model_load}')
print(f'total_time_eval={total_time_eval}')
print(f'path_image_01_result_rgb={path_image_01_result_rgb}')
print(f'path_image_01_result_mask={path_image_01_result_mask}')
# https://pytorch.org/vision/main/auto_examples/plot_visualization_utils.html
# https://debuggercafe.com/an-introduction-to-pytorch-visualization-utilities/
if __name__ == '__main__':
print('main_masks_story_rgb_02()')
main_masks_story_rgb_02()
pass