Skip to content

Latest commit

 

History

History
49 lines (31 loc) · 1.87 KB

File metadata and controls

49 lines (31 loc) · 1.87 KB

Feature extraction with DeepProfiler

This folder contains the config files to run DeepProfiler feature extraction using a pretrained model.

Install DeepProfiler

Follow the Installation guide.

Download images

Copy the tiff images to the inputs/images/ folder.

Download locations

Copy the csv files containing the cell locations to the inputs/locations folder.

Download pretrained model

Download the pretrained model and move it to outputs/efn_pretrained/checkpoint/efficientnetb0_notop.h5

Extract single-cell features

Extract features using the profile option:

$ python3 -m deepprofiler --exp efn_pretrained --root ./ --config jump.json profile

Build profiles with single-cell features

Run the aggregation script to build well-based profiles:

$ python3 utils/build_profiles.py

It will generate the efn_pretrained.parquet file with the following structure:

Metadata_Plate Metadata_Well 0 1 2 ... 6397 6398 6399
0 BR00116996 A01 -0.145242 -0.0976836 -0.110939 ... -0.188828 -0.0994691 1.11783
1 BR00116996 A02 -0.16149 -0.0870829 -0.130767 ... -0.185635 -0.11242 1.04221
2 BR00116996 A03 -0.146293 -0.0802944 -0.123345 ... -0.180474 -0.105045 1.01936
3 BR00116996 A04 -0.153452 -0.0818477 -0.133035 ... -0.187012 -0.103294 0.992679
4 BR00116996 A05 -0.167078 -0.0862786 -0.134154 ... -0.187428 -0.109548 1.11078