forked from a8m/rql
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrql.go
775 lines (710 loc) · 21.3 KB
/
rql.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
package rql
import (
"bytes"
"container/list"
"database/sql"
"errors"
"fmt"
"math"
"reflect"
"strings"
"sync"
"time"
"unicode"
"github.com/google/uuid"
)
//go:generate easyjson -omit_empty -disallow_unknown_fields -snake_case rql.go
// Search holds all search-related fields, namely the string the user queried for, but potentially other configuration variables as well.
type Search struct {
Query string `json:"query,omitempty"`
}
// Query is the decoded result of the user input.
//
//easyjson:json
type Query struct {
// Limit must be > 0 and <= to `LimitMaxValue`.
Limit int `json:"limit,omitempty"`
// Offset must be >= 0.
Offset int `json:"offset,omitempty"`
// Select contains the list of expressions define the value for the `SELECT` clause.
// For example:
//
// params, err := p.Parse([]byte(`{
// "select": ["name", "age"]
// }`))
//
Select []string `json:"select,omitempty"`
// Sort contains list of expressions define the value for the `ORDER BY` clause.
// In order to return the rows in descending order you can prefix your field with `-`.
// For example:
//
// params, err := p.Parse([]byte(`{
// "sort": ["name", "-age", "+redundant"]
// }`))
//
Sort []string `json:"sort,omitempty"`
// Filter is the query object for building the value for the `WHERE` clause.
// The full documentation of the supported operators is writtern in the README.
// An example for filter object:
//
// params, err := p.Parse([]byte(`{
// "filter": {
// "account": { "$like": "%github%" },
// "$or": [
// { "city": "TLV" },
// { "city": "NYC" }
// ]
// }
// }`))
//
Filter map[string]interface{} `json:"filter,omitempty"`
// Search is an object that allows to do cross-column searches on a specific model.
// The same field can be used to run search queries against search engines, such as ElasticSearch without specifying a concrete column.
// An example of a search object
// params, err := p.Parse([]byte(`{
// "search": {
// "query": "golang"
// }
// }`))
Search Search `json:"search,omitempty"`
}
// Params is the parser output after calling to `Parse`. You should pass its
// field values to your query tool. For example, Suppose you use `gorm`:
//
// params, err := p.Parse(b)
// if err != nil {
// return nil, err
// }
// var users []User
// err := db.Where(params.FilterExp, params.FilterArgs...).
// Order(params.Sort).
// Find(&users).
// Error
// if err != nil {
// return nil, err
// }
// return users, nil
type Params struct {
// Limit represents the number of rows returned by the SELECT statement.
Limit int
// Offset specifies the offset of the first row to return. Useful for pagination.
Offset int
// Select contains the expression for the `SELECT` clause defined in the Query.
Select []string
// Sort used as a parameter for the `ORDER BY` clause. For example, "age desc, name".
Sort string
// Search is used as a parameter for doing multi-column, case-insensitive searches.
// Search and SearchArgs come together and used as a parameters for the `WHERE` clause.
Search string
SearchArgs []interface{}
// FilterExp and FilterArgs come together and used as a parameters for the `WHERE` clause.
//
// examples:
// 1. Exp: "name = ?"
// Args: "a8m"
//
// 2. Exp: "name = ? AND age >= ?"
// Args: "a8m", 22
FilterExp string
FilterArgs []interface{}
}
// ParseError is type of error returned when there is a parsing problem.
type ParseError struct {
msg string
}
func (p ParseError) Error() string {
return p.msg
}
type ValidateFn func(v interface{}) error
type ConvertFn func(v interface{}) interface{}
type ValueFn func(v interface{}) interface{}
// field is a configuration of a struct field.
type field struct {
// Name of the column.
Name string
// Has a "sort" option in the tag.
Sortable bool
// Has a "search" option in the tag.
Searchable bool
// Has a "filter" option in the tag.
Filterable bool
// All supported operators for this field.
FilterOps map[string]bool
// Validation for the type. for example, unit8 greater than or equal to 0.
ValidateFn ValidateFn
// ConvertFn converts the given value to the type value.
ConvertFn ConvertFn
// ValueFn maps the incoming value to the expected DB value
ValueFn ValueFn
}
// A Parser parses various types. The result from the Parse method is a Param object.
// It is safe for concurrent use by multiple goroutines except for configuration changes.
type Parser struct {
Config
fields map[string]*field
searchableFields []*field
}
// NewParser creates a new Parser. it fails if the configuration is invalid.
func NewParser(c Config) (*Parser, error) {
if err := c.defaults(); err != nil {
return nil, err
}
p := &Parser{
Config: c,
fields: make(map[string]*field),
}
if err := p.init(); err != nil {
return nil, err
}
// Populate searchable fields so we don't have to recalculate it again when parsing
for _, field := range p.fields {
if field.Searchable {
p.searchableFields = append(p.searchableFields, field)
}
}
return p, nil
}
// MustNewParser is like NewParser but panics if the configuration is invalid.
// It simplifies safe initialization of global variables holding a resource parser.
func MustNewParser(c Config) *Parser {
p, err := NewParser(c)
if err != nil {
panic(err)
}
return p
}
// Parse parses the given buffer into a Param object. It returns an error
// if the JSON is invalid, or its values don't follow the schema of rql.
func (p *Parser) Parse(b []byte) (pr *Params, err error) {
q := &Query{}
if err := q.UnmarshalJSON(b); err != nil {
return nil, &ParseError{"decoding buffer to *Query: " + err.Error()}
}
return p.ParseQuery(q)
}
// ParseQuery parses the given struct into a Param object. It returns an error
// if one of the query values don't follow the schema of rql.
func (p *Parser) ParseQuery(q *Query) (pr *Params, err error) {
defer func() {
if e := recover(); e != nil {
perr, ok := e.(*ParseError)
if !ok {
panic(e)
}
err = perr
pr = nil
}
}()
pr = &Params{
Limit: p.DefaultLimit,
}
expect(q.Offset >= 0, "offset must be greater than or equal to 0")
pr.Offset = q.Offset
if q.Limit != 0 {
expect(q.Limit > 0 && q.Limit <= p.LimitMaxValue, "limit must be greater than 0 and less than or equal to %d", p.LimitMaxValue)
pr.Limit = q.Limit
}
ps := p.newParseState()
ps.and(q.Filter)
pr.FilterExp = ps.String()
pr.FilterArgs = ps.values
pr.Search, pr.SearchArgs = p.search(q.Search)
pr.Sort = p.sort(q.Sort)
if len(pr.Sort) == 0 && len(p.DefaultSort) > 0 {
pr.Sort = p.sort(p.DefaultSort)
}
pr.Select = p.selects(q.Select)
parseStatePool.Put(ps)
return
}
// Column is the default function that converts field name into a database column.
// It used to convert the struct fields into their database names. For example:
//
// Username => username
// FullName => full_name
// HTTPCode => http_code
func Column(s string) string {
var b strings.Builder
for i := 0; i < len(s); i++ {
r := rune(s[i])
// put '.' if it is not a start or end of a word, current letter is an uppercase letter,
// and previous letter is a lowercase letter (cases like: "UserName"), or next letter is
// also a lowercase letter and previous letter is not "_".
if i > 0 && i < len(s)-1 && unicode.IsUpper(r) &&
(unicode.IsLower(rune(s[i-1])) ||
unicode.IsLower(rune(s[i+1])) && unicode.IsLetter(rune(s[i-1]))) {
b.WriteString("_")
}
b.WriteRune(unicode.ToLower(r))
}
return b.String()
}
func Value(columnKey string) func(interface{}) interface{} {
return func(val interface{}) interface{} {
return val
}
}
// init initializes the parser parsing state. it scans the fields
// in a breath-first-search order and for each one of the field calls parseField.
func (p *Parser) init() error {
t := indirect(reflect.TypeOf(p.Model))
l := list.New()
for i := 0; i < t.NumField(); i++ {
l.PushFront(t.Field(i))
}
for l.Len() > 0 {
f := l.Remove(l.Front()).(reflect.StructField)
_, ok := f.Tag.Lookup(p.TagName)
switch t := indirect(f.Type); {
// no matter what the type of this field. if it has a tag,
// it is probably a filterable or sortable.
case ok:
if err := p.parseField(f); err != nil {
return err
}
case t.Kind() == reflect.Struct:
for i := 0; i < t.NumField(); i++ {
f1 := t.Field(i)
if !f.Anonymous {
f1.Name = f.Name + p.FieldSep + f1.Name
}
l.PushFront(f1)
}
case f.Anonymous:
p.Log("ignore embedded field %q that is not struct type", f.Name)
}
}
return nil
}
// parseField parses the given struct field tag, and add a rule
// in the parser according to its type and the options that were set on the tag.
func (p *Parser) parseField(sf reflect.StructField) error {
name := p.ColumnFn(p.colName(sf.Name))
f := &field{
Name: name,
ConvertFn: convertFn,
ValueFn: p.ValueFn(name),
FilterOps: make(map[string]bool),
}
layout := time.RFC3339
opts := strings.Split(sf.Tag.Get(p.TagName), ",")
for _, opt := range opts {
switch s := strings.TrimSpace(opt); {
case s == "sort":
f.Sortable = true
case s == "search":
f.Searchable = true
case s == "filter":
f.Filterable = true
case strings.HasPrefix(opt, "column"):
f.Name = strings.TrimPrefix(opt, "column=")
case strings.HasPrefix(opt, "layout"):
layout = strings.TrimPrefix(opt, "layout=")
// if it's one of the standard layouts, like: RFC822 or Kitchen.
if ly, ok := layouts[layout]; ok {
layout = ly
}
// test the layout on a value (on itself). however, some layouts are invalid
// time values for time.Parse, due to formats such as _ for space padding and
// Z for zone information.
v := strings.NewReplacer("_", " ", "Z", "+").Replace(layout)
if _, err := time.Parse(layout, v); err != nil {
return fmt.Errorf("rql: layout %q is not parsable: %v", layout, err)
}
default:
p.Log("Ignoring unknown option %q in struct tag", opt)
}
}
var filterOps []Op
switch typ := indirect(sf.Type); typ.Kind() {
case reflect.Bool:
f.ValidateFn = validateBool
filterOps = append(filterOps, EQ, NEQ)
case reflect.String:
f.ValidateFn = validateString
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, LIKE, IN, NIN)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
f.ValidateFn = validateInt
f.ConvertFn = convertInt
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
f.ValidateFn = validateUInt
f.ConvertFn = convertInt
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
case reflect.Float32, reflect.Float64:
f.ValidateFn = validateFloat
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
case reflect.Array:
switch v := reflect.Zero(typ); v.Interface().(type) {
case uuid.UUID, uuid.NullUUID:
f.ValidateFn = validateUUID
f.ConvertFn = convertUUID
filterOps = append(filterOps, EQ, NEQ, IN, NIN)
}
case reflect.Struct:
switch v := reflect.Zero(typ); v.Interface().(type) {
case sql.NullBool:
f.ValidateFn = validateBool
filterOps = append(filterOps, EQ, NEQ)
case sql.NullString:
f.ValidateFn = validateString
filterOps = append(filterOps, EQ, NEQ, IN, NIN)
case sql.NullInt64:
f.ValidateFn = validateInt
f.ConvertFn = convertInt
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
case sql.NullFloat64:
f.ValidateFn = validateFloat
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
case time.Time:
f.ValidateFn = validateTime(layout)
f.ConvertFn = convertTime(layout)
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
default:
if !v.Type().ConvertibleTo(reflect.TypeOf(time.Time{})) {
return fmt.Errorf("rql: field type for %q is not supported", sf.Name)
}
f.ValidateFn = validateTime(layout)
f.ConvertFn = convertTime(layout)
filterOps = append(filterOps, EQ, NEQ, LT, LTE, GT, GTE, IN, NIN)
}
default:
return fmt.Errorf("rql: field type for %q is not supported", sf.Name)
}
for _, op := range filterOps {
f.FilterOps[p.op(op)] = true
}
p.fields[f.Name] = f
return nil
}
type parseState struct {
*Parser // reference of the parser config
*bytes.Buffer // query builder
values []interface{} // query values
}
var parseStatePool sync.Pool
func (p *Parser) newParseState() (ps *parseState) {
if v := parseStatePool.Get(); v != nil {
ps = v.(*parseState)
ps.Reset()
ps.values = nil
} else {
ps = new(parseState)
// currently we're using an arbitrary size as the capacity of initial buffer.
// What we can do in the future is to track the size of parse results, and use
// the average value. Same thing applies to the `values` field below.
ps.Buffer = bytes.NewBuffer(make([]byte, 0, 64))
}
ps.values = make([]interface{}, 0, 8)
ps.Parser = p
return
}
// search build the sort clause.
func (p *Parser) search(search Search) (q string, args []interface{}) {
if search.Query == "" || len(p.searchableFields) == 0 {
return "", nil
}
args = make([]interface{}, 0)
searchSegments := make([]string, len(p.searchableFields))
for i, field := range p.searchableFields { // searchable fields are set for given entity, so they are safe
expect(p.fields[field.Name] != nil, "unrecognized key %q for searching", field.Name)
searchSegments[i] = fmt.Sprintf("LOWER(%s) LIKE LOWER('%%' || ? || '%%')", field.Name)
args = append(args, search.Query)
}
return strings.Join(searchSegments, " OR "), args
}
func (p *Parser) selects(selects []string) []string {
res := make([]string, len(selects))
for i, key := range selects {
res[i] = p.ColumnFn(p.colName(key))
}
return res
}
// sort build the sort clause.
func (p *Parser) sort(fields []string) string {
sortParams := make([]string, len(fields))
for i, field := range fields {
expect(field != "", "sort field can not be empty")
var orderBy string
// if the sort field prefixed by an order indicator.
if order, ok := sortDirection[field[0]]; ok {
orderBy = order
field = field[1:]
}
columnKey := p.ColumnFn(p.colName(field))
expect(p.fields[columnKey] != nil, "unrecognized key %q for sorting", field)
expect(p.fields[columnKey].Sortable, "field %q is not sortable", field)
if orderBy != "" {
columnKey += " " + orderBy
}
sortParams[i] = columnKey
}
return strings.Join(sortParams, ", ")
}
func (p *parseState) and(f map[string]interface{}) {
var i int
for k, v := range f {
if i > 0 {
p.WriteString(" AND ")
}
columnKey := p.ColumnFn(p.colName(k))
switch {
case k == p.op(OR):
terms, ok := v.([]interface{})
expect(ok, "$or must be type array")
p.relOp(OR, terms)
case k == p.op(AND):
terms, ok := v.([]interface{})
expect(ok, "$and must be type array")
p.relOp(AND, terms)
case p.fields[columnKey] != nil:
expect(p.fields[columnKey].Filterable, "field %q is not filterable", columnKey)
p.field(p.fields[columnKey], v)
default:
expect(false, "unrecognized key %q for filtering", k)
}
i++
}
}
func (p *parseState) relOp(op Op, terms []interface{}) {
var i int
if len(terms) > 1 {
p.WriteByte('(')
}
for _, t := range terms {
if i > 0 {
p.WriteByte(' ')
p.WriteString(op.SQL())
p.WriteByte(' ')
}
mt, ok := t.(map[string]interface{})
expect(ok, "expressions for $%s operator must be type object", op)
p.and(mt)
i++
}
if len(terms) > 1 {
p.WriteByte(')')
}
}
func (p *parseState) field(f *field, v interface{}) {
terms, ok := v.(map[string]interface{})
// default equality check.
if !ok {
must(f.ValidateFn(f.ValueFn(v)), "invalid datatype for field %q", f.Name)
p.WriteString(p.fmtOp(f.Name, EQ, 1, false))
p.values = append(p.values, f.ConvertFn(f.ValueFn(v)))
}
var i int
if len(terms) > 1 {
p.WriteByte('(')
}
for opName, opVal := range terms {
if i > 0 {
p.WriteString(" AND ")
}
expect(f.FilterOps[opName], "can not apply op %q on field %q", opName, f.Name)
validateFn := f.ValidateFn
isSlice := isSliceOp(p, opName)
if isSlice {
validateFn = validateSlice(validateFn)
}
must(validateFn(f.ValueFn(opVal)), "invalid datatype or format for field %q", f.Name)
if isSlice {
sliceRaw := convertSlice(f.ConvertFn, f.ValueFn)(opVal)
slice, _ := sliceRaw.([]interface{})
p.WriteString(p.fmtOp(f.Name, Op(opName[1:]), len(slice), true))
p.values = append(p.values, slice...)
} else {
p.WriteString(p.fmtOp(f.Name, Op(opName[1:]), 1, false))
p.values = append(p.values, f.ConvertFn(f.ValueFn(opVal)))
}
i++
}
if len(terms) > 1 {
p.WriteByte(')')
}
}
// fmtOp create a string for the operation with a placeholder.
// for example: "name = ?", or "age >= ?".
func (p *Parser) fmtOp(field string, op Op, placeHolderCount int, wrap bool) string {
colName := p.colName(field)
placeHolder := "?"
// If there are no placeholders, just return an always-false condition
if placeHolderCount == 0 {
return "1=0"
}
if wrap {
placeHolder = "(" + strings.Trim(strings.Repeat("?,", placeHolderCount), ",") + ")"
}
return colName + " " + op.SQL() + " " + placeHolder
}
// colName formats the query field to database column name in cases the user configured a custom
// field separator. for example: if the user configured the field separator to be ".", the fields
// like "address.name" will be changed to "address_name".
func (p *Parser) colName(field string) string {
if p.FieldSep != DefaultFieldSep {
return strings.Replace(field, p.FieldSep, DefaultFieldSep, -1)
}
return field
}
func (p *Parser) op(op Op) string {
return p.OpPrefix + string(op)
}
// expect panic if the condition is false.
func expect(cond bool, msg string, args ...interface{}) {
if !cond {
panic(&ParseError{fmt.Sprintf(msg, args...)})
}
}
// must panics if the error is not nil.
func must(err error, msg string, args ...interface{}) {
if err != nil {
args = append(args, err)
panic(&ParseError{fmt.Sprintf(msg+": %s", args...)})
}
}
// indirect returns the item at the end of indirection.
func indirect(t reflect.Type) reflect.Type {
for ; t.Kind() == reflect.Ptr; t = t.Elem() {
}
return t
}
// --------------------------------------------------------
// Validators and Converters
func errorType(v interface{}, expected string) error {
actual := "nil"
if v != nil {
actual = reflect.TypeOf(v).Kind().String()
}
return fmt.Errorf("expect <%s>, got <%s>", expected, actual)
}
// validate that the underlined element of given interface is a boolean.
func validateBool(v interface{}) error {
if _, ok := v.(bool); !ok {
return errorType(v, "bool")
}
return nil
}
// validate that the underlined element of given interface is a string.
func validateString(v interface{}) error {
if _, ok := v.(string); !ok {
return errorType(v, "string")
}
return nil
}
// validate that the underlined element of given interface is a float.
func validateFloat(v interface{}) error {
if _, ok := v.(float64); !ok {
return errorType(v, "float64")
}
return nil
}
// validate that the underlined element of given interface is an int.
func validateInt(v interface{}) error {
n, ok := v.(float64)
if !ok {
return errorType(v, "int")
}
if math.Trunc(n) != n {
return errors.New("not an integer")
}
return nil
}
// validate that the underlined element of given interface is an int and greater than 0.
func validateUInt(v interface{}) error {
if err := validateInt(v); err != nil {
return err
}
if v.(float64) < 0 {
return errors.New("not an unsigned integer")
}
return nil
}
// validate that the underlined element of this interface is a "datetime" string.
func validateTime(layout string) func(interface{}) error {
return func(v interface{}) error {
s, ok := v.(string)
if !ok {
return errorType(v, "string")
}
_, err := time.Parse(layout, s)
return err
}
}
func validateUUID(v interface{}) error {
s, ok := v.(string)
if !ok {
return errorType(v, "string")
}
_, err := uuid.Parse(s)
return err
}
// convert float to int.
func convertInt(v interface{}) interface{} {
return int(v.(float64))
}
// convert string to time object.
func convertTime(layout string) func(interface{}) interface{} {
return func(v interface{}) interface{} {
t, _ := time.Parse(layout, v.(string))
return t
}
}
func convertUUID(v interface{}) interface{} {
id, _ := uuid.Parse(v.(string))
return id
}
// nop converter.
func convertFn(v interface{}) interface{} {
return v
}
func validateSlice(fn ValidateFn) ValidateFn {
return func(v interface{}) error {
vs, ok := v.([]interface{})
if !ok {
return errorType(v, "slice")
}
for _, v := range vs {
if err := fn(v); err != nil {
return err
}
}
return nil
}
}
func convertSlice(cFn ConvertFn, vFn ValueFn) ConvertFn {
return func(v interface{}) interface{} {
vs, _ := v.([]interface{})
out := make([]interface{}, 0, len(vs))
for _, v := range vs {
out = append(out, cFn(vFn(v)))
}
return out
}
}
// layouts holds all standard time.Time layouts.
var layouts = map[string]string{
"ANSIC": time.ANSIC,
"UnixDate": time.UnixDate,
"RubyDate": time.RubyDate,
"RFC822": time.RFC822,
"RFC822Z": time.RFC822Z,
"RFC850": time.RFC850,
"RFC1123": time.RFC1123,
"RFC1123Z": time.RFC1123Z,
"RFC3339": time.RFC3339,
"RFC3339Nano": time.RFC3339Nano,
"Kitchen": time.Kitchen,
"Stamp": time.Stamp,
"StampMilli": time.StampMilli,
"StampMicro": time.StampMicro,
"StampNano": time.StampNano,
}
func isSliceOp(p *parseState, opName string) bool {
for _, op := range sliceOp {
if p.op(op) == opName {
return true
}
}
return false
}