forked from Adoby7/CLRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
btree.cpp
559 lines (493 loc) · 15.6 KB
/
btree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#include<iostream>
#include<stack>
#include<queue>
using namespace std;
//#define DEBUG 1
/************************************************************************
* *
* I provided these API *
* 1. B_tree_insert(T k) *
* 2. PrintTree(int kind) *
* 3. get_minimum() *
* 4. get_maximum() *
* 5. search(T k) *
* 6. bool remove(const T &key) *
************************************************************************/
template<class T>
class Btree
{
private:
static const int t = 3;
struct Node
{
bool isLeaf;
int n;
T keyValue[t+1];
Node *pChild[2*t+1];
Node(bool b=true, int _n=0) : isLeaf(b), n(_n){}
};
Node *bRoot;
//statistics
int nodeNum;
public:
Btree()
{
nodeNum = 0;
B_tree_create();
}
void viewStatistics()
{
cout << "-----------------------------Statistics-----------------------------" << endl;
cout << "BUILD " << nodeNum << " nodes" << endl;
cout << "-----------------------------Statistics-----------------------------" << endl;
}
void B_tree_insert(T k)
{
Node *r = bRoot;
if (r->n == 2*t - 1)
{
Node *s = allocate_node();
bRoot = s;
s->isLeaf = false;
s->pChild[1] = r;
B_tree_split_child(s, 1, r);
B_tree_insert_nonfull(s, k);
} else {
B_tree_insert_nonfull(r, k);
}
}
/*
* 1 means integer
* 2 means character
*/
void PrintTree(int kind = 1) const //打印树的关键字
{
queue<Node*> myqueue;
myqueue.push(bRoot);
int depth = 0;
while(!myqueue.empty())
{
queue<Node*> nextlevel;
cout << "depth : " << depth << endl;
while(!myqueue.empty())
{
Node* temp = myqueue.front();
myqueue.pop();
cout << "[";
for(int i = 1;i <= temp->n;i++)
{
if(kind == 2)cout << (char)temp->keyValue[i] << " ";
else cout << temp->keyValue[i] << " ";
}
cout << "]";
if(!temp->isLeaf)
for(int i = 1;i <= temp->n+1;i++)
nextlevel.push(temp->pChild[i]);
}
cout << endl;
depth++;
myqueue = nextlevel;
}
}
T get_minimum() const
{
return B_TREE_FIND_MIN(bRoot);
}
T get_maximum() const
{
return B_TREE_FIND_MAX(bRoot);
}
bool search(T k)
{
int index = 0;
Node *temp = B_tree_search(bRoot, k, &index);
if(temp != nullptr) return true;
return false;
}
//just test predecessor
/*
T get_root_pre()
{
return B_tree_find_predecessor(bRoot, 1);
}
*/
bool remove(const T &key) //从B中删除结点key
{
if (!search(key)) //不存在
{
return false;
}
if (bRoot->n == 1 && bRoot->isLeaf)//特殊情况处理
{
clear();
return true;
}
recursive_remove(bRoot, key);
return true;
}
void clear() //清空B树
{
recursive_clear(bRoot);
bRoot = nullptr;
}
//删除节点
void deleteNode(Node *pNode)
{
if (pNode != nullptr)
{
delete pNode;
pNode = nullptr;
}
}
private:
Node *allocate_node()
{
Node *node = new Node();
nodeNum++;
#ifdef DEBUG
cout << "allocate a new node" << endl;
#endif
return node;
}
void disk_write(Node *x) const
{
#ifdef DEBUG
cout << "write disk" << endl;
#endif
}
void disk_read(Node *x) const
{
#ifdef DEBUG
cout << "read disk" << endl;
#endif
}
void B_tree_create()
{
bRoot = allocate_node();
disk_write(bRoot);
}
void B_tree_split_child(Node *x, int i, Node *y)
{
Node *z = allocate_node();
z->isLeaf = y->isLeaf;
z->n = t - 1;
for(int j = 1; j <= t-1; j++)
z->keyValue[j] = y->keyValue[j+t];
if (!y->isLeaf)
for(int j = 1;j <= t;j++)
z->pChild[j] = y->pChild[j+t];
y->n = t - 1;
for(int j = x->n+1;j >= i+1;j--)
x->pChild[j+1] = x->pChild[j];
x->pChild[i+1] = z;
for(int j = x->n;j >= i;j--)
x->keyValue[j+1] = x->keyValue[j];
x->keyValue[i] = y->keyValue[t];
x->n++;
disk_write(y);
disk_write(z);
disk_write(x);
}
void B_tree_insert_nonfull(Node *x, T k)
{
int i = x->n;
if(x->isLeaf)
{
while(i >= 1 && k < x->keyValue[i])
{
x->keyValue[i+1] = x->keyValue[i];
i--;
}
x->keyValue[i+1] = k;
x->n++;
disk_write(x);
} else {
while(i >= 1 && k < x->keyValue[i]) i--;
i++;
disk_read(x->pChild[i]);
if(x->pChild[i]->n == 2*t - 1)
{
B_tree_split_child(x, i, x->pChild[i]);
if(k > x->keyValue[i])
i++;
}
B_tree_insert_nonfull(x->pChild[i], k);
}
}
/*
*find the minimum key in btree
*/
T B_TREE_FIND_MIN(Node *x) const
//PRE: x is a node on the B-tree T. The top level call is B-TREE-FIND-MIN(T.root).
{
if (x == nullptr)
{
cerr << "The tree is empty" << endl;
return -1;
} else if (x->isLeaf) //x is leaf
{
return x->keyValue[1]; //return the minimum key of x
} else
{
disk_read(x->pChild[1]);
return B_TREE_FIND_MIN(x->pChild[1]);
}
}
/*
*find the maximum key in btree
*/
T B_TREE_FIND_MAX(Node *x) const
{
if (x == nullptr)
{
cerr << "The tree is empty" << endl;
return -1;
} else if (x->isLeaf) //x is leaf
{
return x->keyValue[x->n]; //return the minimum key of x
} else
{
disk_read(x->pChild[x->n+1]);
return B_TREE_FIND_MAX(x->pChild[x->n+1]);
}
}
T B_tree_find_predecessor(Node *x, int i)
{
if(!x->isLeaf)
{
disk_read(x->pChild[i]);
return B_TREE_FIND_MAX(x->pChild[i]);
} else if(i > 1){
return x->keyValue[i-1];
} else {
Node *z = x;
stack<Node*> mystack;
buildPath(bRoot, x->keyValue[i], mystack);
while(1)
{
if(mystack.empty())
{
cerr << "No predecessor";
return -1;
}
Node *y = mystack.top();
mystack.pop();
int j = 1;
disk_read(y->pChild[1]);
while(y->pChild[j] != x)
{
j++;
disk_read(y->pChild[j]);
}
if(j == 1) z = y;
else return y->keyValue[j-1];
}
}
}
void buildPath(Node *x, T k, stack<Node*>& mystack)
{
int i = 1;
while(i <= x->n && k > x->keyValue[i]) i++;
if (i <= x->n && k == x->keyValue[i]) return;
if (x->isLeaf) return;
else
{
disk_read(x->pChild[i]);
mystack.push(x);
buildPath(x->pChild[i], k, mystack);
}
}
Node* B_tree_search(Node *x, T k, int *index)
{
int i = 1;
while(i <= x->n && k > x->keyValue[i]) i++;
if (i <= x->n && k == x->keyValue[i])
{
*index = i;
return x;
}
if (x->isLeaf) return nullptr;
else
{
disk_read(x->pChild[i]);
return B_tree_search(x->pChild[i], k, index);
}
}
//删除树
void recursive_clear(Node *pNode)
{
if (pNode != nullptr)
{
if (!pNode->isLeaf)
{
for(int i = 1; i <= pNode->n + 1; ++i)
recursive_clear(pNode->pChild[i]);
}
deleteNode(pNode);
}
}
//递归的删除关键字
void recursive_remove(Node *pNode, const T &key)
{
int i = 1;
while(i <= pNode->n && key > pNode->keyValue[i])
++i;
if (i <= pNode->n && key == pNode->keyValue[i])//关键字key在节点pNode中
{
if (pNode->isLeaf)//pNode是个叶节点
{
//从pNode中删除k
pNode->n--;
for (; i <= pNode->n; ++i)
pNode->keyValue[i] = pNode->keyValue[i+1];
return;
}
else//pNode是个内节点
{
Node *pChildPrev = pNode->pChild[i];//节点pNode中前于key的子节点
Node *pChildNext = pNode->pChild[i+1];//节点pNode中后于key的子节点
if (pChildPrev->n >= t)//节点pChildPrev中至少包含CHILD_MIN个关键字
{
T prevKey = getPredecessor(pChildPrev); //获取key的前驱关键字
recursive_remove(pChildPrev, prevKey);
pNode->keyValue[i] = prevKey; //替换成key的前驱关键字
return;
}
else if (pChildNext->n >= t)//节点pChildNext中至少包含CHILD_MIN个关键字
{
T nextKey = getSuccessor(pChildNext); //获取key的后继关键字
recursive_remove(pChildNext, nextKey);
pNode->keyValue[i] = nextKey; //替换成key的后继关键字
return;
}
else//节点pChildPrev和pChildNext中都只包含CHILD_MIN-1个关键字
{
mergeChild(pNode, i);
recursive_remove(pChildPrev, key);
}
}
}
else//关键字key不在节点pNode中
{
Node *pChildNode = pNode->pChild[i];//包含key的子树根节点
if (pChildNode->n == t-1)//只有t-1个关键字
{
Node *pLeft = i > 1 ? pNode->pChild[i-1] : NULL; //左兄弟节点
Node *pRight = i <= pNode->n ? pNode->pChild[i+1] : NULL;//右兄弟节点
int j;
if (pLeft && pLeft->n >= t)//左兄弟节点至少有CHILD_MIN个关键字
{
//父节点中i-1的关键字下移至pChildNode中
for (j = pChildNode->n+1; j > 1; --j)
{
pChildNode->keyValue[j] = pChildNode->keyValue[j-1];
}
pChildNode->keyValue[1] = pNode->keyValue[i-1];
if (!pLeft->isLeaf)
{
for (j=pChildNode->n+2; j > 1; --j) //pLeft节点中合适的子女指针移植到pChildNode中
{
pChildNode->pChild[j] = pChildNode->pChild[j-1];
}
pChildNode->pChild[1] = pLeft->pChild[pLeft->n];
}
++pChildNode->n;
pNode->keyValue[i] = pLeft->keyValue[pLeft->n];//pLeft节点中的最大关键字上升到pNode中
--pLeft->n;
}
else if (pRight && pRight->n >= t)//右兄弟节点至少有CHILD_MIN个关键字
{
//父节点中i的关键字下移至pChildNode中
pChildNode->keyValue[pChildNode->n+1] = pNode->keyValue[i];
++pChildNode->n;
pNode->keyValue[i] = pRight->keyValue[1];//pRight节点中的最小关键字上升到pNode中
--pRight->n;
for (j = 1; j <= pRight->n; ++j)
{
pRight->keyValue[j] = pRight->keyValue[j+1];
}
if (!pRight->isLeaf)
{
pChildNode->pChild[pChildNode->n+1] = pRight->pChild[1];//pRight节点中合适的子女指针移植到pChildNode中
for (j = 1; j <= pRight->n+1; ++j)
{
pRight->pChild[j] = pRight->pChild[j+1];
}
}
}
//左右兄弟节点都只包含CHILD_MIN-1个节点
else if (pLeft)//与左兄弟合并
{
mergeChild(pNode, i-1);
pChildNode = pLeft;
}
else if (pRight)//与右兄弟合并
{
mergeChild(pNode, i);
}
}
recursive_remove(pChildNode, key);
}
}
//合并两个子节点
void mergeChild(Node *pParent, int index)
{
Node *pChild1 = pParent->pChild[index];
Node *pChild2 = pParent->pChild[index+1];
//将pChild2数据合并到pChild1
pChild1->n = 2*t-1;
pChild1->keyValue[t] = pParent->keyValue[index];//将父节点index的值下移
for (int i = 1; i <= t-1; ++i)
pChild1->keyValue[t+i] = pChild2->keyValue[i];
if (!pChild1->isLeaf)
for (int i = 1; i <= t; ++i)
pChild1->pChild[i+t] = pChild2->pChild[i];
//父节点删除index的key,index后的往前移一位
pParent->n--;
for(int i = index; i <= pParent->n; ++i)
{
pParent->keyValue[i] = pParent->keyValue[i+1];
pParent->pChild[i+1] = pParent->pChild[i+2];
}
deleteNode(pChild2); //删除pChild2
if(pParent->n == 0) deleteNode(pParent);
}
T getPredecessor(Node *pNode)//找到前驱关键字
{
while (!pNode->isLeaf)
{
pNode = pNode->pChild[pNode->n+1];
}
return pNode->keyValue[pNode->n];
}
T getSuccessor(Node *pNode)//找到后继关键字
{
while (!pNode->isLeaf)
{
pNode = pNode->pChild[1];
}
return pNode->keyValue[1];
}
};
int main() {
Btree<int> tree;
for(int i = 1;i < 20;i++)
{
tree.B_tree_insert(i);
//cout << " n = " << i << endl;
//tree.viewStatistics();
}
tree.remove(19);
tree.PrintTree();
//cout << "The minimum key is : " << tree.get_minimum() << endl;
//cout << "The maximum key is : " << tree.get_maximum() << endl;
//cout << "The pre of the root is : " << tree.get_root_pre() << endl;
/*
bool fff = tree.search(5);
if(fff)
{
cout << "find 5 in the tree " << endl;
}
*/
return 0;
}