-
Notifications
You must be signed in to change notification settings - Fork 86
/
script_3_fine_tuning.py
154 lines (128 loc) · 5.62 KB
/
script_3_fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from code.DatasetLoader import DatasetLoader
from code.MethodBertComp import GraphBertConfig
from code.MethodGraphBertNodeClassification import MethodGraphBertNodeClassification
from code.ResultSaving import ResultSaving
from code.Settings import Settings
import numpy as np
import torch
#---- 'cora' , 'citeseer', 'pubmed' ----
dataset_name = 'cora'
np.random.seed(1)
torch.manual_seed(1)
#---- cora-small is for debuging only ----
if dataset_name == 'cora-small':
nclass = 7
nfeature = 1433
ngraph = 10
elif dataset_name == 'cora':
nclass = 7
nfeature = 1433
ngraph = 2708
elif dataset_name == 'citeseer':
nclass = 6
nfeature = 3703
ngraph = 3312
elif dataset_name == 'pubmed':
nclass = 3
nfeature = 500
ngraph = 19717
#---- Fine-Tuning Task 1: Graph Bert Node Classification (Cora, Citeseer, and Pubmed) ----
if 1:
#---- hyper-parameters ----
if dataset_name == 'pubmed':
lr = 0.001
k = 30
max_epoch = 1000 # 500 ---- do an early stop when necessary ----
elif dataset_name == 'cora':
lr = 0.01
k = 7
max_epoch = 150 # 150 ---- do an early stop when necessary ----
elif dataset_name == 'citeseer':
k = 5
lr = 0.001
max_epoch = 2000 #2000 # it takes a long epochs to get good results, sometimes can be more than 2000
x_size = nfeature
hidden_size = intermediate_size = 32
num_attention_heads = 2
num_hidden_layers = 2
y_size = nclass
graph_size = ngraph
residual_type = 'graph_raw'
# --------------------------
print('************ Start ************')
print('GrapBert, dataset: ' + dataset_name + ', residual: ' + residual_type + ', k: ' + str(k) + ', hidden dimension: ' + str(hidden_size) +', hidden layer: ' + str(num_hidden_layers) + ', attention head: ' + str(num_attention_heads))
# ---- objection initialization setction ---------------
data_obj = DatasetLoader()
data_obj.dataset_source_folder_path = './data/' + dataset_name + '/'
data_obj.dataset_name = dataset_name
data_obj.k = k
data_obj.load_all_tag = True
bert_config = GraphBertConfig(residual_type = residual_type, k=k, x_size=nfeature, y_size=y_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_attention_heads=num_attention_heads, num_hidden_layers=num_hidden_layers)
method_obj = MethodGraphBertNodeClassification(bert_config)
#---- set to false to run faster ----
method_obj.spy_tag = True
method_obj.max_epoch = max_epoch
method_obj.lr = lr
result_obj = ResultSaving()
result_obj.result_destination_folder_path = './result/GraphBert/'
result_obj.result_destination_file_name = dataset_name + '_' + str(num_hidden_layers)
setting_obj = Settings()
evaluate_obj = None
# ------------------------------------------------------
# ---- running section ---------------------------------
setting_obj.prepare(data_obj, method_obj, result_obj, evaluate_obj)
setting_obj.load_run_save_evaluate()
# ------------------------------------------------------
method_obj.save_pretrained('./result/PreTrained_GraphBert/' + dataset_name + '/node_classification_complete_model/')
print('************ Finish ************')
#------------------------------------
#---- Fine-Tuning Task 2: Graph Bert Graph Clustering (Cora, Citeseer, and Pubmed) ----
if 0:
#---- hyper-parameters ----
if dataset_name == 'pubmed':
lr = 0.001
k = 30
max_epoch = 500 # 500 ---- do an early stop when necessary ----
elif dataset_name == 'cora':
lr = 0.01
k = 7
max_epoch = 150 #150 # ---- do an early stop when necessary ----
elif dataset_name == 'citeseer':
k = 5
lr = 0.001
max_epoch = 2000 #2000 # it takes a long epochs to converge, probably more than 2000
x_size = nfeature
hidden_size = intermediate_size = 32
num_attention_heads = 2
num_hidden_layers = 2
y_size = nclass
graph_size = ngraph
residual_type = 'graph_raw'
# --------------------------
print('************ Start ************')
print('GrapBert, dataset: ' + dataset_name + ', residual: ' + residual_type + ', k: ' + str(k) + ', hidden dimension: ' + str(hidden_size) +', hidden layer: ' + str(num_hidden_layers) + ', attention head: ' + str(num_attention_heads))
# ---- objection initialization setction ---------------
data_obj = DatasetLoader()
data_obj.dataset_source_folder_path = './data/' + dataset_name + '/'
data_obj.dataset_name = dataset_name
data_obj.k = k
data_obj.load_all_tag = True
bert_config = GraphBertConfig(residual_type = residual_type, k=k, x_size=nfeature, y_size=y_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_attention_heads=num_attention_heads, num_hidden_layers=num_hidden_layers)
method_obj = MethodGraphBertGraphClustering(bert_config)
#---- set to false to run faster ----
method_obj.cluster_number = y_size
method_obj.spy_tag = True
method_obj.max_epoch = max_epoch
method_obj.lr = lr
result_obj = ResultSaving()
result_obj.result_destination_folder_path = './result/GraphBert/clustering_' + dataset_name
result_obj.result_destination_file_name = '_' + ''
setting_obj = Settings()
evaluate_obj = None
# ------------------------------------------------------
# ---- running section ---------------------------------
setting_obj.prepare(data_obj, method_obj, result_obj, evaluate_obj)
setting_obj.load_run_save_evaluate()
# ------------------------------------------------------
print('************ Finish ************')
#------------------------------------