You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
a bash script that will continuously generate subtitle for all files in a specified directory. and then option:
translate generated srt using translate-shell (sudo apt install translate-shell) ,
embed srt
example of command:
./gensub /folder/path/of/video --translate --source ja --target zh-CN --embed
below is my modified generate_subtitles.py that using sensevoice where will show progress bar and remaining time.
#!/usr/bin/env python3
#
# Copyright (c) 2023 Xiaomi Corporation
"""
This file demonstrates how to use sherpa-onnx Python APIs to generate
subtitles.
Supported file formats are those supported by ffmpeg; for instance,
*.mov, *.mp4, *.wav, etc.
Note that you need a non-streaming model for this script.
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
(5) For SenseVoice CTC models
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--sense-voice=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--num-threads=2 \
/path/to/test.mp4
"""
import argparse
import datetime as dt
import shutil
import subprocess
import sys
from pathlib import Path
from dataclasses import dataclass
from datetime import timedelta
from tqdm import tqdm
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--sense-voice",
default="",
type=str,
help="Path to the model.onnx from SenseVoice",
)
parser.add_argument(
"--num-threads",
type=int,
default=4,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
""",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages when loading modes.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="""Sample rate of the feature extractor. Must match the one
expected by the model. Note: The input sound files can have a
different sample rate from this argument.""",
)
parser.add_argument(
"--feature-dim",
type=int,
default=80,
help="Feature dimension. Must match the one expected by the model",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to generate subtitles ",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.sense_voice:
assert_file_exists(args.sense_voice)
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=args.sense_voice,
tokens=args.tokens,
num_threads=args.num_threads,
use_itn=True,
debug=args.debug,
)
else:
raise ValueError("Please specify at least one model")
return recognizer
@dataclass
class Segment:
start: float
duration: float
text: str = ""
@property
def end(self):
return self.start + self.duration
def __str__(self):
s = f"{timedelta(seconds=self.start)}"[:-3]
s += " --> "
s += f"{timedelta(seconds=self.end)}"[:-3]
s = s.replace(".", ",")
s += "\n"
s += self.text
return s
def main():
args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.silero_vad_model)
assert args.num_threads > 0, args.num_threads
if not Path(args.sound_file).is_file():
raise ValueError(f"{args.sound_file} does not exist")
assert (
args.sample_rate == 16000
), f"Only sample rate 16000 is supported. Given: {args.sample_rate}"
recognizer = create_recognizer(args)
ffmpeg_cmd = [
"ffmpeg",
"-i",
args.sound_file,
"-f",
"s16le",
"-acodec",
"pcm_s16le",
"-ac",
"1",
"-ar",
str(args.sample_rate),
"-",
]
process = subprocess.Popen(
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
)
frames_per_read = int(args.sample_rate * 100) # 100 second
stream = recognizer.create_stream()
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.25 # seconds
config.silero_vad.min_speech_duration = 0.25 # seconds
config.silero_vad.max_speech_duration = 5 # seconds
config.sample_rate = args.sample_rate
window_size = config.silero_vad.window_size
buffer = []
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)
segment_list = []
# Get total duration of the audio file
total_duration = float(
subprocess.check_output(
[
"ffprobe",
"-v",
"quiet",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
args.sound_file,
]
).strip()
)
# Initialize progress bar
pbar = tqdm(total=int(total_duration), unit="sec", desc="Processing")
start_t = dt.datetime.now()
num_processed_samples = 0
last_update = 0
is_eof = False
while True:
# *2 because int16_t has two bytes
data = process.stdout.read(frames_per_read * 2)
if not data:
if is_eof:
break
is_eof = True
# pad 1 second at the end of the file for the VAD
data = np.zeros(1 * args.sample_rate, dtype=np.int16).tobytes()
samples = np.frombuffer(data, dtype=np.int16)
samples = samples.astype(np.float32) / 32768
num_processed_samples += samples.shape[0]
# Update progress bar
current_time = num_processed_samples / args.sample_rate
if current_time - last_update >= 1: # Update every second
pbar.update(int(current_time - last_update))
last_update = current_time
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
if is_eof:
vad.flush()
streams = []
segments = []
while not vad.empty():
segment = Segment(
start=vad.front.start / args.sample_rate,
duration=len(vad.front.samples) / args.sample_rate,
)
segments.append(segment)
stream = recognizer.create_stream()
stream.accept_waveform(args.sample_rate, vad.front.samples)
streams.append(stream)
vad.pop()
for s in streams:
recognizer.decode_stream(s)
for seg, stream in zip(segments, streams):
seg.text = stream.result.text
segment_list.append(seg)
pbar.close() # Close the progress bar
end_t = dt.datetime.now()
elapsed_seconds = (end_t - start_t).total_seconds()
duration = num_processed_samples / args.sample_rate
rtf = elapsed_seconds / duration
srt_filename = Path(args.sound_file).with_suffix(".srt")
with open(srt_filename, "w", encoding="utf-8") as f:
for i, seg in enumerate(segment_list):
print(i + 1, file=f)
print(seg, file=f)
print("", file=f)
print(f"Saved to {srt_filename}")
print(f"Audio duration:\t{duration:.3f} s")
print(f"Elapsed:\t{elapsed_seconds:.3f} s")
print(f"RTF = {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}")
print("Done!")
if __name__ == "__main__":
if shutil.which("ffmpeg") is None:
print("Please install ffmpeg first!")
sys.exit(-1)
if shutil.which("ffprobe") is None:
print("Please install ffprobe first!")
sys.exit(-1)
main()
and then below is the bash script as mentioned:
#!/bin/bash
# Check if the directory is passed as an argument
if [ $# -lt 1 ]; then
echo "Usage: $0 <directory> [--embed] [--translate] --source <source_lang> --target <target_lang>"
exit 1
fi
# Parse the directory and optional flags
DIRECTORY="$1"
EMBED=false
TRANSLATE=false
SOURCE_LANG=""
TARGET_LANG=""
shift # Shift to process additional flags
while [[ "$#" -gt 0 ]]; do
case "$1" in
--embed)
EMBED=true
;;
--translate)
TRANSLATE=true
;;
--source|-s)
SOURCE_LANG="$2"
shift
;;
--target|-t)
TARGET_LANG="$2"
shift
;;
*)
echo "Unknown option: $1"
exit 1
;;
esac
shift
done
# Validate source and target languages if translation is enabled
if [ "$TRANSLATE" = true ]; then
if [[ -z "$SOURCE_LANG" || -z "$TARGET_LANG" ]]; then
echo "Error: Source and target languages must be specified when using --translate."
echo "Usage: $0 <directory> --translate --source <source_lang> --target <target_lang>"
exit 1
fi
fi
# Define the Gensub command
Gensub="python3 /path/to/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--sense-voice=/path/to/model.onnx \
--tokens=/path/to/tokens.txt \
--num-threads=4 \
--sample-rate 16000"
# Check if the directory exists
if [ ! -d "$DIRECTORY" ]; then
echo "Directory $DIRECTORY does not exist."
exit 1
fi
# Function to translate subtitles using translate-shell
translate_subtitles() {
local input_file=$1
local output_file=$2
echo "Translating subtitles from $SOURCE_LANG to $TARGET_LANG..."
: > "$output_file" # Clear or create the output file
# Initialize progress bar
total_lines=$(wc -l < "$input_file")
current_line=0
while IFS= read -r line || [[ -n "$line" ]]; do
if [[ "$line" =~ ^[0-9]+$ || "$line" =~ "-->" ]]; then
# Preserve index numbers and timecode lines
echo "$line" >> "$output_file"
elif [[ -z "$line" ]]; then
# Preserve blank lines
echo "" >> "$output_file"
else
# Translate text lines
if ! translated_line=$(trans -brief "$SOURCE_LANG:$TARGET_LANG" "$line" 2>/dev/null); then
echo "Error: Translation failed for '$line'. Keeping original."
translated_line="$line" # Fallback to original line if translation fails
fi
echo "$translated_line" >> "$output_file"
fi
# Update progress
((current_line++))
progress=$((current_line * 100 / total_lines))
printf "\rProgress: [%-50s] %d%%" "$(printf '=%.0s' $(seq 1 $((progress / 2))))" "$progress"
done < "$input_file"
echo # New line after progress bar
echo "Translation completed: $output_file"
}
# Process files one by one
for file in "$DIRECTORY"/*; do
if [ -f "$file" ]; then
output_file="${file%.*}.srt"
translated_file="${output_file%.srt}_${SOURCE_LANG}_to_${TARGET_LANG}.srt"
embedded_file="${file%.*}_embedded.mp4"
# Generate subtitles if not already done
if [ -f "$output_file" ]; then
echo "Subtitle file for $file already exists, skipping subtitle generation."
else
echo "Processing $file to generate subtitles..."
if ! $Gensub "$file"; then
echo "Error processing $file. Exiting."
exit 1
fi
fi
# Translate subtitles if required
if [ "$TRANSLATE" = true ] && [ ! -f "$translated_file" ]; then
translate_subtitles "$output_file" "$translated_file"
fi
# Embed subtitles if required
if [ "$EMBED" = true ] && [ ! -f "$embedded_file" ]; then
if [ -f "$translated_file" ]; then
echo "Embedding translated subtitles into $file..."
if ! ffmpeg -i "$file" -i "$translated_file" -c copy -c:s mov_text "$embedded_file"; then
echo "Error embedding subtitles for $file. Exiting."
exit 1
fi
else
echo "Embedding original subtitles into $file..."
if ! ffmpeg -i "$file" -i "$output_file" -c copy -c:s mov_text "$embedded_file"; then
echo "Error embedding subtitles for $file. Exiting."
exit 1
fi
fi
fi
fi
done
echo "All files have been processed."
👋👏👍✌️
The text was updated successfully, but these errors were encountered:
a bash script that will continuously generate subtitle for all files in a specified directory. and then option:
example of command:
./gensub /folder/path/of/video --translate --source ja --target zh-CN --embed
below is my modified generate_subtitles.py that using sensevoice where will show progress bar and remaining time.
and then below is the bash script as mentioned:
👋👏👍✌️
The text was updated successfully, but these errors were encountered: