-
Notifications
You must be signed in to change notification settings - Fork 0
/
clair3.py
107 lines (91 loc) · 2.87 KB
/
clair3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import sys
from importlib import import_module
from shared.param_p import REPO_NAME
DATA_PREP_SCRIPTS_FOLDER="preprocess"
DEEP_LEARNING_FOLDER="clair3"
POST_PROCESS_SCRIPTS_FOLDER="clair3.metrics"
deep_learning_folder = [
"CallVarBam",
"CallVariants",
"CallVariants_pytorch",
"Train",
"Train_tf",
"Train_torch",
"Train_torch_ova",
"Train_torch_MSA_transformer",
"Train_AE",
"Eval_torch",
"Eval_tf",
"Train_byol",
"plot_tensor",
"Augmentation",
"CallVariantsFromCffi",
"CallVariantsFromCffi_torch"
]
data_preprocess_folder = [
"GetTruth",
"Tensor2Bin",
'RealignReads',
'CreateTensorPileup',
"CreateTensorFullAlignment",
'CreateTrainingTensor',
'SplitExtendBed',
'MergeBin',
'MergeVcf',
'SelectHetSnp',
'SelectCandidates',
'SelectUnlabeledCandidates',
'UnifyRepresentation',
'CheckEnvs',
'SortVcf',
'SelectQual',
"CreateTensorPileupFromCffi"
"CreateTensorFullAlignmentFromCffi",
]
post_process_scripts_folder = [
'GetOverallMetrics',
]
def directory_for(submodule_name):
if submodule_name in deep_learning_folder:
return DEEP_LEARNING_FOLDER
if submodule_name in data_preprocess_folder:
return DATA_PREP_SCRIPTS_FOLDER
if submodule_name in post_process_scripts_folder:
return POST_PROCESS_SCRIPTS_FOLDER
return ""
def print_help_messages():
from textwrap import dedent
print(dedent("""\
{0} submodule invocator:
Usage: python clair3.py [submodule] [options of the submodule]
Available data preparation submodules:\n{1}
Available clair submodules:\n{2}
Available post processing submodules:\n{3}
""".format(
REPO_NAME,
"\n".join(" - %s" % submodule_name for submodule_name in data_preprocess_folder),
"\n".join(" - %s" % submodule_name for submodule_name in deep_learning_folder),
"\n".join(" - %s" % submodule_name for submodule_name in post_process_scripts_folder),
)
))
def main():
if len(sys.argv) <= 1 or sys.argv[1] == "-h" or sys.argv[1] == "--help":
print_help_messages()
sys.exit(0)
submodule_name = sys.argv[1]
if (
submodule_name not in deep_learning_folder and
submodule_name not in data_preprocess_folder and
submodule_name not in post_process_scripts_folder
):
sys.exit("[ERROR] Submodule %s not found." % (submodule_name))
directory = directory_for(submodule_name)
submodule = import_module("%s.%s" % (directory, submodule_name))
# filter arguments (i.e. filter clair3.py) and add ".py" for that submodule
sys.argv = sys.argv[1:]
sys.argv[0] += (".py")
# Note: need to make sure every submodule contains main() method
submodule.main()
sys.exit(0)
if __name__ == "__main__":
main()