forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keypoint_postprocess.py
369 lines (314 loc) · 14.6 KB
/
keypoint_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from scipy.optimize import linear_sum_assignment
from collections import abc, defaultdict
import cv2
import numpy as np
import math
import paddle
import paddle.nn as nn
from keypoint_preprocess import get_affine_mat_kernel, get_affine_transform
class HrHRNetPostProcess(object):
"""
HrHRNet postprocess contain:
1) get topk keypoints in the output heatmap
2) sample the tagmap's value corresponding to each of the topk coordinate
3) match different joints to combine to some people with Hungary algorithm
4) adjust the coordinate by +-0.25 to decrease error std
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
Args:
max_num_people (int): max number of people support in postprocess
heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size
"""
def __init__(self, max_num_people=30, heat_thresh=0.2, tag_thresh=1.):
self.max_num_people = max_num_people
self.heat_thresh = heat_thresh
self.tag_thresh = tag_thresh
def lerp(self, j, y, x, heatmap):
H, W = heatmap.shape[-2:]
left = np.clip(x - 1, 0, W - 1)
right = np.clip(x + 1, 0, W - 1)
up = np.clip(y - 1, 0, H - 1)
down = np.clip(y + 1, 0, H - 1)
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
-0.25)
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
-0.25)
return offset_y + 0.5, offset_x + 0.5
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
original_width):
N, J, H, W = heatmap.shape
assert N == 1, "only support batch size 1"
heatmap = heatmap[0]
tagmap = tagmap[0]
heats = heat_k[0]
inds_np = inds_k[0]
y = inds_np // W
x = inds_np % W
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
coords = np.stack((y, x), axis=2)
# threshold
mask = heats > self.heat_thresh
# cluster
cluster = defaultdict(lambda: {
'coords': np.zeros((J, 2), dtype=np.float32),
'scores': np.zeros(J, dtype=np.float32),
'tags': []
})
for jid, m in enumerate(mask):
num_valid = m.sum()
if num_valid == 0:
continue
valid_inds = np.where(m)[0]
valid_tags = tags[jid, m, :]
if len(cluster) == 0: # initialize
for i in valid_inds:
tag = tags[jid, i]
key = tag[0]
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, i]
cluster[key]['coords'][jid] = coords[jid, i]
continue
candidates = list(cluster.keys())[:self.max_num_people]
centroids = [
np.mean(
cluster[k]['tags'], axis=0) for k in candidates
]
num_clusters = len(centroids)
# shape is (num_valid, num_clusters, tag_dim)
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
# modulate dist with heat value, see `use_detection_val`
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
# pad the cost matrix, otherwise new pose are ignored
if num_valid > num_clusters:
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
'constant',
constant_values=((0, 0), (0, 1e-10)))
rows, cols = linear_sum_assignment(cost)
for y, x in zip(rows, cols):
tag = tags[jid, y]
if y < num_valid and x < num_clusters and \
l2_dist[y, x] < self.tag_thresh:
key = candidates[x] # merge to cluster
else:
key = tag[0] # initialize new cluster
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, y]
cluster[key]['coords'][jid] = coords[jid, y]
# shape is [k, J, 2] and [k, J]
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
valid = pose_scores > 0
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
if valid.sum() == 0:
return pose_kpts, pose_kpts
# refine coords
valid_coords = pose_coords[valid].astype(np.int32)
y = valid_coords[..., 0].flatten()
x = valid_coords[..., 1].flatten()
_, j = np.nonzero(valid)
offsets = self.lerp(j, y, x, heatmap)
pose_coords[valid, 0] += offsets[0]
pose_coords[valid, 1] += offsets[1]
# mean score before salvage
mean_score = pose_scores.mean(axis=1)
pose_kpts[valid, 2] = pose_scores[valid]
# salvage missing joints
if True:
for pid, coords in enumerate(pose_coords):
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
score = heatmap - np.round(norm) # (J, H, W)
flat_score = score.reshape(J, -1)
max_inds = np.argmax(flat_score, axis=1)
max_scores = np.max(flat_score, axis=1)
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
if salvage_joints.sum() == 0:
continue
y = max_inds[salvage_joints] // W
x = max_inds[salvage_joints] % W
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
y = y.astype(np.float32) + offsets[0]
x = x.astype(np.float32) + offsets[1]
pose_coords[pid][salvage_joints, 0] = y
pose_coords[pid][salvage_joints, 1] = x
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
original_height, original_width,
min(H, W))
return pose_kpts, mean_score
def transpred(kpts, h, w, s):
trans, _ = get_affine_mat_kernel(h, w, s, inv=True)
return warp_affine_joints(kpts[..., :2].copy(), trans)
def warp_affine_joints(joints, mat):
"""Apply affine transformation defined by the transform matrix on the
joints.
Args:
joints (np.ndarray[..., 2]): Origin coordinate of joints.
mat (np.ndarray[3, 2]): The affine matrix.
Returns:
matrix (np.ndarray[..., 2]): Result coordinate of joints.
"""
joints = np.array(joints)
shape = joints.shape
joints = joints.reshape(-1, 2)
return np.dot(np.concatenate(
(joints, joints[:, 0:1] * 0 + 1), axis=1),
mat.T).reshape(shape)
class HRNetPostProcess(object):
def __init__(self, use_dark=True):
self.use_dark = use_dark
def flip_back(self, output_flipped, matched_parts):
assert output_flipped.ndim == 4,\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped = output_flipped[:, :, :, ::-1]
for pair in matched_parts:
tmp = output_flipped[:, pair[0], :, :].copy()
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
output_flipped[:, pair[1], :, :] = tmp
return output_flipped
def get_max_preds(self, heatmaps):
"""get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
"""
assert isinstance(heatmaps,
np.ndarray), 'heatmaps should be numpy.ndarray'
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = heatmaps.shape[0]
num_joints = heatmaps.shape[1]
width = heatmaps.shape[3]
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def gaussian_blur(self, heatmap, kernel):
border = (kernel - 1) // 2
batch_size = heatmap.shape[0]
num_joints = heatmap.shape[1]
height = heatmap.shape[2]
width = heatmap.shape[3]
for i in range(batch_size):
for j in range(num_joints):
origin_max = np.max(heatmap[i, j])
dr = np.zeros((height + 2 * border, width + 2 * border))
dr[border:-border, border:-border] = heatmap[i, j].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
heatmap[i, j] = dr[border:-border, border:-border].copy()
heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
return heatmap
def dark_parse(self, hm, coord):
heatmap_height = hm.shape[0]
heatmap_width = hm.shape[1]
px = int(coord[0])
py = int(coord[1])
if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \
+ hm[py-1][px-1])
dyy = 0.25 * (
hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
derivative = np.matrix([[dx], [dy]])
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy**2 != 0:
hessianinv = hessian.I
offset = -hessianinv * derivative
offset = np.squeeze(np.array(offset.T), axis=0)
coord += offset
return coord
def dark_postprocess(self, hm, coords, kernelsize):
"""
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
"""
hm = self.gaussian_blur(hm, kernelsize)
hm = np.maximum(hm, 1e-10)
hm = np.log(hm)
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
return coords
def get_final_preds(self, heatmaps, center, scale, kernelsize=3):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords, maxvals = self.get_max_preds(heatmaps)
heatmap_height = heatmaps.shape[2]
heatmap_width = heatmaps.shape[3]
if self.use_dark:
coords = self.dark_postprocess(heatmaps, coords, kernelsize)
else:
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
diff = np.array([
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px]
])
coords[n][p] += np.sign(diff) * .25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(coords[i], center[i], scale[i],
[heatmap_width, heatmap_height])
return preds, maxvals
def __call__(self, output, center, scale):
preds, maxvals = self.get_final_preds(output, center, scale)
return np.concatenate(
(preds, maxvals), axis=-1), np.mean(
maxvals, axis=1)
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def translate_to_ori_images(keypoint_result, batch_records):
kpts = keypoint_result['keypoint']
scores = keypoint_result['score']
kpts[..., 0] += batch_records[:, 0:1]
kpts[..., 1] += batch_records[:, 1:2]
return kpts, scores