-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsrcnn_main.py
103 lines (76 loc) · 3.34 KB
/
srcnn_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import print_function
import argparse
from math import log10
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from srcnn_data import get_training_set, get_test_set
from srcnn_model import SRCNN
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, required=True, help="super resolution upscale factor")
parser.add_argument('--batch_size', type=int, default=64, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=10, help='testing batch size')
parser.add_argument('--epochs', type=int, default=2, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate. Default=0.01')
parser.add_argument('--cuda', action='store_true', help='use cuda?')
parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
opt = parser.parse_args()
print(opt)
use_cuda = opt.cuda
if use_cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if use_cuda:
torch.cuda.manual_seed(opt.seed)
train_set = get_training_set(opt.upscale_factor)
test_set = get_test_set(opt.upscale_factor)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.test_batch_size, shuffle=False)
srcnn = SRCNN()
criterion = nn.MSELoss()
if(use_cuda):
srcnn.cuda()
criterion = criterion.cuda()
optimizer = optim.Adam(srcnn.parameters(),lr=opt.lr)
def train(epoch):
epoch_loss = 0
for iteration, batch in enumerate(training_data_loader, 1):
input, target = Variable(batch[0]), Variable(batch[1])
if use_cuda:
input = input.cuda()
target = target.cuda()
optimizer.zero_grad()
#print ("input shape = " , input.shape)
#print ("target shape = ", target.shape)
model_out = srcnn(input)
#print ("model_out shape =" , model_out.shape)
loss = criterion(model_out, target)
epoch_loss += loss.data[0]
loss.backward()
optimizer.step()
print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
def test():
avg_psnr = 0
for batch in testing_data_loader:
input, target = Variable(batch[0]), Variable(batch[1])
if use_cuda:
input = input.cuda()
target = target.cuda()
prediction = srcnn(input)
mse = criterion(prediction, target)
psnr = 10 * log10(1 / mse.data[0])
avg_psnr += psnr
print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
def checkpoint(epoch):
model_out_path = "model_epoch_{}.pth".format(epoch)
torch.save(srcnn, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
for epoch in range(1, opt.epochs + 1):
train(epoch)
test()
if(epoch%10==0):
checkpoint(epoch)