-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·119 lines (103 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from PIL import Image
import streamlit as st
import streamlit.components.v1 as components
import requests
import dominate
# pyright: reportWildcardImportFromLibrary=false
from dominate.tags import *
from scraper.page_processor import PageProcessor
from coherence.entities.coreferences import coref_annotation, coref_diagram
from stylometry.logistic_regression import predict_author
from tem.process import get_default_te
from train_tem_metrics import predict_from_tem_metrics
def load_from_url(url):
page = requests.get(url).text
processor = PageProcessor(page)
processed_page = processor.get_fulltext(separator="\n")
print(processed_page)
return processed_page
def run_analysis(input_type, user_input):
if input_type == 'URL':
content = load_from_url(user_input)
else:
content = user_input
with st.spinner("Computing Analysis... for long texts this can take a few minutes"):
style_prediction = predict_author(content)
try:
te = get_default_te(content)
te_prediction = predict_from_tem_metrics(te)
except AttributeError: # some texts are not working for tem
st.error("The input text is too short for the Topic Evolution Model to work. Please enter a different "
"text. If you are using a URL, please try to copy the text manually since some websites can block "
"our scraper. And result in this error since no text was found.")
return
entity_html = entity_occurrence_diagram(content)
author = get_prediction(style_prediction, te_prediction)
if author == 1:
st.subheader("This text was likely written by a machine!")
elif author == -1:
st.subheader("This text was likely written by a human author.")
elif author == 0:
st.subheader("We are not sure if this text was written by a machine or a human.")
st.write(
"Stylometry indicated that the text " + ("author could not be identified" if sum(style_prediction) == 0
else "was written by a " + ("machine" if sum(style_prediction) > 0
else "human")) + ".")
st.write(
"Metrics on the Topic Graph indicated that the text was written by a " + ("machine, " if te_prediction[0] == 1
else "human, ")
+ "with a confidence of " + str(round(te_prediction[1] * 100, 2)) + "%.")
st.write(
"Please note that this estimation does not need to be correct and should be further supported by the in-depth "
"analysis below.")
st.subheader("Topic Evolution Analysis:")
image = te.graph().pipe(format='jpg')
st.image(image, caption="Topic Evolution on Input Text")
st.subheader("Entity Occurrences Analysis:")
components.html(entity_html, height=1000, scrolling=True)
def entity_occurrence_diagram(text):
chart, legend = coref_diagram(coref_annotation(text))
doc = dominate.document(title="Entity Occurrences")
with doc:
container = div(style='max-width: 900px; margin: auto')
container.add(chart)
container.add(h2('Legend'))
container.add(legend)
return doc.render()
def get_prediction(style_prediction, te_prediction):
te_confidence = te_prediction[1]
te_prediction = te_prediction[0]
if te_prediction == 0:
te_prediction = -1
style = sum(style_prediction)
if style * te_prediction > 0:
return te_prediction
if style == 0 or te_confidence > 0.8:
return te_prediction
elif style < 0:
if te_prediction < 0 or te_confidence < 0.6:
return -1
else:
return 0
else:
if te_prediction < 0 and te_confidence > 0.7:
return 0
else:
return 1
if __name__ == '__main__':
col1, col2 = st.columns([3, 1])
col1.title("Welcome at unCover")
col2.image(Image.open("unCover.png"), width=100)
st.write(
" \nHere you can analyze a news article on topics and writing style to get further insights on whether this text "
"might have been written by an AI. This system was developed at Hasso-Plattner-Institute. To start, please choose "
"the type of input and enter the url/text in the field below.")
col3, col4 = st.columns(2)
input_type = col3.selectbox("type of input", ('URL', 'Text'), label_visibility="collapsed")
text = ""
if input_type == 'URL':
text = st.text_input("URL to analyze:", "")
else:
text = st.text_area("Full text to analyze:", height=300)
if col4.button("Compute Results"):
run_analysis(input_type, text)