forked from didiercrunch/paillier
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paththresholdkey_generator.go
274 lines (245 loc) · 7.74 KB
/
thresholdkey_generator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
package paillier
import (
"crypto/rand"
"errors"
"io"
"math/big"
"time"
)
// Generates a threshold Paillier key with an algorithm based on [DJN 10],
// section 5.1, "Key generation".
//
// Bear in mind that the algorithm assumes an existence of a trusted dealer
// to generate and distribute the keys.
//
//
// [DJN 10]: Ivan Damgard, Mads Jurik, Jesper Buus Nielsen, (2010)
// A Generalization of Paillier’s Public-Key System
// with Applications to Electronic Voting
// Aarhus University, Dept. of Computer Science, BRICS
type ThresholdKeyGenerator struct {
PublicKeyBitLength int
TotalNumberOfDecryptionServers int
Threshold int
random io.Reader
p *big.Int // p is prime of `PublicKeyBitLength/2` bits and `p = 2*p1 + 1`
q *big.Int // q is prime of `PublicKeyBitLength/2` bits and `q = 2*q1 + 1`
p1 *big.Int // p1 is prime of `PublicKeyBitLength/2 - 1` bits
q1 *big.Int // q1 is prime of `PublicKeyBitLength/2 - 1` bits
n *big.Int // n=p*q and is of `PublicKeyBitLength` bits
m *big.Int // m = p1*q1
nSquare *big.Int // nSquare = n*n
nm *big.Int // nm = n*m
// As specified in the paper, d must satify d=1 mod n and d=0 mod m
d *big.Int
// A generator of QR in Z_{n^2}
v *big.Int
// The polynomial coefficients to hide a secret. See Shamir.
polynomialCoefficients []*big.Int
}
// GetThresholdKeyGenerator is a preferable way to construct the
// ThresholdKeyGenerator.
// Due to the various properties that must be met for the threshold key to be
// considered valid, the minimum public key `N` bit length is 18 bits and the
// public key bit length should be an even number.
// The plaintext space for the key will be `Z_N`.
func GetThresholdKeyGenerator(
publicKeyBitLength int,
totalNumberOfDecryptionServers int,
threshold int,
random io.Reader,
) (*ThresholdKeyGenerator, error) {
if publicKeyBitLength%2 == 1 {
// For an odd n-bit number, we can't find two n/2-bit numbers with two
// the most significant bits set on which multiplied gives an n-bit
// number.
return nil, errors.New("Public key bit length must be an even number")
}
if publicKeyBitLength < 18 {
// We need to find two n/2-bit safe primes, P and Q which are not equal.
// This is not possible for n<18.
return nil, errors.New("Public key bit length must be at least 18 bits")
}
return &ThresholdKeyGenerator{
PublicKeyBitLength: publicKeyBitLength,
TotalNumberOfDecryptionServers: totalNumberOfDecryptionServers,
Threshold: threshold,
random: random,
}, nil
}
func (tkg *ThresholdKeyGenerator) generateSafePrimes() (*big.Int, *big.Int, error) {
concurrencyLevel := 4
timeout := 120 * time.Second
safePrimeBitLength := tkg.PublicKeyBitLength / 2
return GenerateSafePrime(safePrimeBitLength, concurrencyLevel, timeout, tkg.random)
}
func (tkg *ThresholdKeyGenerator) initPandP1() error {
var err error
tkg.p, tkg.p1, err = tkg.generateSafePrimes()
return err
}
func (tkg *ThresholdKeyGenerator) initQandQ1() error {
var err error
tkg.q, tkg.q1, err = tkg.generateSafePrimes()
return err
}
func (tkg *ThresholdKeyGenerator) initShortcuts() {
tkg.n = new(big.Int).Mul(tkg.p, tkg.q)
tkg.m = new(big.Int).Mul(tkg.p1, tkg.q1)
tkg.nSquare = new(big.Int).Mul(tkg.n, tkg.n)
tkg.nm = new(big.Int).Mul(tkg.n, tkg.m)
}
func (tkg *ThresholdKeyGenerator) arePsAndQsGood() bool {
if tkg.p.Cmp(tkg.q) == 0 {
return false
}
if tkg.p.Cmp(tkg.q1) == 0 {
return false
}
if tkg.p1.Cmp(tkg.q) == 0 {
return false
}
return true
}
func (tkg *ThresholdKeyGenerator) initPsAndQs() error {
if err := tkg.initPandP1(); err != nil {
return err
}
if err := tkg.initQandQ1(); err != nil {
return err
}
if !tkg.arePsAndQsGood() {
return tkg.initPsAndQs()
}
return nil
}
// v generates a cyclic group of squares in Zn^2.
func (tkg *ThresholdKeyGenerator) computeV() error {
var err error
tkg.v, err = GetRandomGeneratorOfTheQuadraticResidue(tkg.nSquare, tkg.random)
return err
}
// Choose d such that d=0 (mod m) and d=1 (mod n).
//
// From Chinese Remainder Theorem:
// x = a1 (mod n1)
// x = a2 (mod n2)
//
// N = n1*n2
// y1 = N/n1
// y2 = N/n2
// z1 = y1^-1 mod n1
// z2 = y2^-1 mod n2
// Solution is x = a1*y1*z1 + a2*y2*z2
//
// In our case:
// x = 0 (mod m)
// x = 1 (mod n)
//
// Since a1 = 0, it's enough to compute a2*y2*z2 to get x.
//
// a2 = 1
// y2 = mn/n = m
// z2 = m^-1 mod n
//
// x = a2*y2*z2 = 1 * m * [m^-1 mod n]
func (tkg *ThresholdKeyGenerator) initD() {
mInverse := new(big.Int).ModInverse(tkg.m, tkg.n)
tkg.d = new(big.Int).Mul(mInverse, tkg.m)
}
func (tkg *ThresholdKeyGenerator) initNumerialValues() error {
if err := tkg.initPsAndQs(); err != nil {
return err
}
tkg.initShortcuts()
tkg.initD()
return tkg.computeV()
}
// f(X) = a_0 X^0 + a_1 X^1 + ... + a_(w-1) X^(w-1)
//
// where:
// `w` - threshold
// `a_i` - random value from {0, ... nm - 1} for 0<i<w
// `a_0` is always equal `d`
func (tkg *ThresholdKeyGenerator) generateHidingPolynomial() error {
tkg.polynomialCoefficients = make([]*big.Int, tkg.Threshold)
tkg.polynomialCoefficients[0] = tkg.d
var err error
for i := 1; i < tkg.Threshold; i++ {
tkg.polynomialCoefficients[i], err = rand.Int(tkg.random, tkg.nm)
if err != nil {
return err
}
}
return nil
}
// The secred share of the i'th authority is `f(i) mod nm`, where `f` is
// the polynomial we generated in `GenerateHidingPolynomial` function.
func (tkg *ThresholdKeyGenerator) computeShare(index int) *big.Int {
share := big.NewInt(0)
for i := 0; i < tkg.Threshold; i++ {
a := tkg.polynomialCoefficients[i]
// we index authorities from 1, that's why we do index+1 here
b := new(big.Int).Exp(big.NewInt(int64(index+1)), big.NewInt(int64(i)), nil)
tmp := new(big.Int).Mul(a, b)
share = new(big.Int).Add(share, tmp)
}
return new(big.Int).Mod(share, tkg.nm)
}
func (tkg *ThresholdKeyGenerator) createShares() []*big.Int {
shares := make([]*big.Int, tkg.TotalNumberOfDecryptionServers)
for i := 0; i < tkg.TotalNumberOfDecryptionServers; i++ {
shares[i] = tkg.computeShare(i)
}
return shares
}
func (tkg *ThresholdKeyGenerator) delta() *big.Int {
return Factorial(tkg.TotalNumberOfDecryptionServers)
}
// Generates verification keys for actions of decryption servers.
//
// For each decryption server `i`, we generate
// v_i = v^(l! s_i) mod n^2
//
// where:
// `l` is the number of decryption servers
// `s_i` is a secret share for server `i`.
// Secret shares were previously generated in the `CrateShares` function.
func (tkg *ThresholdKeyGenerator) createViArray(shares []*big.Int) (viArray []*big.Int) {
viArray = make([]*big.Int, len(shares))
delta := tkg.delta()
for i, share := range shares {
tmp := new(big.Int).Mul(share, delta)
viArray[i] = new(big.Int).Exp(tkg.v, tmp, tkg.nSquare)
}
return viArray
}
func (tkg *ThresholdKeyGenerator) createPrivateKey(i int, share *big.Int, viArray []*big.Int) *ThresholdPrivateKey {
ret := new(ThresholdPrivateKey)
ret.N = tkg.n
ret.V = tkg.v
ret.TotalNumberOfDecryptionServers = tkg.TotalNumberOfDecryptionServers
ret.Threshold = tkg.Threshold
ret.Share = share
ret.Id = i + 1
ret.Vi = viArray
return ret
}
func (tkg *ThresholdKeyGenerator) createPrivateKeys() []*ThresholdPrivateKey {
shares := tkg.createShares()
viArray := tkg.createViArray(shares)
ret := make([]*ThresholdPrivateKey, tkg.TotalNumberOfDecryptionServers)
for i := 0; i < tkg.TotalNumberOfDecryptionServers; i++ {
ret[i] = tkg.createPrivateKey(i, shares[i], viArray)
}
return ret
}
func (tkg *ThresholdKeyGenerator) Generate() ([]*ThresholdPrivateKey, error) {
if err := tkg.initNumerialValues(); err != nil {
return nil, err
}
if err := tkg.generateHidingPolynomial(); err != nil {
return nil, err
}
return tkg.createPrivateKeys(), nil
}